Skip to main content
Log in

MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated for the first time the expression of melanoma cell adhesion molecule (MCAM) and its involvement in the differentiation of 3T3-L1 fibroblasts to adipocytes. We found that MCAM mRNA increased subsequent to the activation of the master regulator of adipogenesis, PPARγ, and this increase was maintained in the mature adipocytes. On the other hand, MCAM knockdown impaired differentiation and induction of PPARγ as well as expression of genes activated by PPARγ. However, events that precede and are necessary for early PPARγ activation, such as C/EBPβ induction, β-catenin downregulation, and ERK activation, were not affected in the MCAM knockdown cells. In keeping with this, the increase in PPARγ mRNA that precedes MCAM induction was not altered in the knockdown cells. In conclusion, our findings suggest that MCAM is a gene upregulated and involved in maintaining PPARγ induction in the late but not in the early stages of 3T3-L1 fibroblasts adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lean ME (2000) Pathophysiology of obesity. Proc Nutr Soc 59:331–336

    Article  CAS  Google Scholar 

  2. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. https://doi.org/10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lauvrud AT, Kelk P, Wiberg M, Kingham PJ (2017) Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties. J Tissue Eng Regen Med 11:2490–2502. https://doi.org/10.1002/term.2147

    Article  CAS  PubMed  Google Scholar 

  4. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273. https://doi.org/10.1016/j.cmet.2006.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C, Browne PO, Rajanayagam O, Burris TP, Schwabe JW, Lazar MA, Chatterjee VK (2000) A dominant-negative peroxisome proliferator-activated receptor gamma (PPAR gamma) mutant is a constitutive repressor and inhibits PPARγ-mediated adipogenesis. J Biol Chem 275:5754–5759

    Article  CAS  Google Scholar 

  6. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289–312. https://doi.org/10.1146/annurev.biochem.77.061307.091829

    Article  CAS  PubMed  Google Scholar 

  7. Gabrielli M, Martini CN, Brandani JN, Iustman LJ, Romero DG, Vila M, del C (2014) Exchange protein activated by cyclic AMP is involved in the regulation of adipogenic genes during 3T3-L1 fibroblasts differentiation. Dev Growth Differ 56:143–151. https://doi.org/10.1111/dgd.12114

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmüller G, Johnson JP (1987) Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res 47:841–845

    CAS  PubMed  Google Scholar 

  9. Wang Z, Yan X (2013) CD146, a multi-functional molecule beyond adhesion. Cancer Lett 330:150–162. https://doi.org/10.1016/j.canlet.2012.11.049

    Article  CAS  PubMed  Google Scholar 

  10. Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798. https://doi.org/10.1002/stem.312

    Article  CAS  PubMed  Google Scholar 

  11. Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, Prat A, Chow S, Li L, Vandevert C, Zago W, Lorenzana C, Nishioka C, Hoffman J, Botelho R, Willits C, Tanaka K, Johnston J, Yednock T (2012) Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS ONE 7:e40443. https://doi.org/10.1371/journal.pone.0040443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tu T, Zhang C, Yan H, Luo Y, Kong R, Wen P, Ye Z, Chen J, Feng J, Liu F, Wu JY, Yan X (2015) CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res 25:275–287. https://doi.org/10.1038/cr.2015.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ye Z, Zhang C, Tu T, Sun M, Liu D, Lu D, Feng J, Yang D, Liu F, Yan X (2013) Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nat Commun 4:2803. https://doi.org/10.1038/ncomms3803

    Article  CAS  PubMed  Google Scholar 

  14. Jiang T, Zhuang J, Duan H, Luo Y, Zeng Q, Fan K, Yan H, Lu D, Ye Z, Hao J, Feng J, Yang D, Yan X (2012) CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. Blood 120:2330–2339. https://doi.org/10.1182/blood-2012-01-406108

    Article  CAS  PubMed  Google Scholar 

  15. Anfosso F, Bardin N, Vivier E, Sabatier F, Sampol J, Dignat-George F (2001) Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J Biol Chem 276:1564–1569. https://doi.org/10.1074/jbc.M007065200

    Article  CAS  PubMed  Google Scholar 

  16. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124:1283–1298. https://doi.org/10.1016/j.cell.2006.01.040

    Article  CAS  Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  19. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  20. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koh YK, Lee MY, Kim JW, Kim M, Moon JS, Lee YJ, Ahn YH, Kim KS (2008) Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. J Biol Chem 283:34896–34906. https://doi.org/10.1074/jbc.M804007200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toneatto J, Guber S, Charó NL, Susperreguy S, Schwartz J, Galigniana MD, Piwien-Pilipuk G (2013) Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 126:5357–5368. https://doi.org/10.1242/jcs.125799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Paddon C, Lewis MD, Grennan-Jones F, Ludgate M (2009) Gsalpha signalling suppresses PPARγ2 generation and inhibits 3T3L1 adipogenesis. J Endocrinol 202:207–215. https://doi.org/10.1677/JOE-09-0099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu J, DeYoung SM, Zhang M, Zhang M, Cheng A, Saltiel AR (2005) Changes in integrin expression during adipocyte differentiation. Cell Metab 2:165–177. https://doi.org/10.1016/j.cmet.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  25. Qiu Z, Wei Y, Chen N, Jiang M, Wu J, Liao K (2001) DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes. J Biol Chem 276:11988–11995. https://doi.org/10.1074/jbc.M011729200

    Article  CAS  PubMed  Google Scholar 

  26. Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R (2004) The peroxisome proliferator-activated receptor gamma regulates expression of the Perilipin gene in adipocytes. J Biol Chem 279:10070–10076. https://doi.org/10.1074/jbc.M308522200

    Article  CAS  PubMed  Google Scholar 

  27. Nagai S, Shimizu C, Umetsu M, Taniguchi S, Endo M, Miyoshi H, Yoshioka N, Kubo M, Koike T (2004) Identification of a functional peroxisome proliferator-activated receptor responsive element within the murine Perilipin gene. Endocrinology 145:2346–2356. https://doi.org/10.1210/en.2003-1180

    Article  CAS  PubMed  Google Scholar 

  28. Cawthorn WP, Heyd F, Hegyi K, Sethi JK (2007) Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ 14:1361–1373. https://doi.org/10.1038/sj.cdd.4402127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953

    Article  CAS  Google Scholar 

  30. Prusty D, Park BH, Davis KE, Farmer SR (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARγamma) and C/EBP alpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 277:46226–46232. https://doi.org/10.1074/jbc.M207776200

    Article  CAS  PubMed  Google Scholar 

  31. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121:2102–2110. https://doi.org/10.1172/JCI46069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  Google Scholar 

  33. Stopp S, Bornhäuser M, Ugarte F, Wobus M, Kuhn M, Brenner S, Thieme S (2013) Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells. Haematologica 98:505–513. https://doi.org/10.3324/haematol.2012.065201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soccio RE, Chen ER, Lazar MA (2014) Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20:573–591. https://doi.org/10.1016/j.cmet.2014.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, Stumvoll M, Blüher M (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:E506–E515. https://doi.org/10.1152/ajpendo.00586.2009

    Article  CAS  PubMed  Google Scholar 

  36. Bu P, Gao L, Zhuang J, Feng J, Yang D, Yan X (2006) Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-kappaB activation. Mol Cancer Ther 5:2872–2878. https://doi.org/10.1158/1535-7163.MCT-06-0260

    Article  CAS  PubMed  Google Scholar 

  37. Zigler M, Villares GJ, Dobroff AS, Wang H, Huang L, Braeuer RR, Kamiya T, Melnikova VO, Song R, Friedman R, Alani RM, Bar-Eli M (2011) Expression of Id-1 is regulated by MCAM/MUC18: a missing link in melanoma progression. Cancer Res 71:3494–3504. https://doi.org/10.1158/0008-5472.CAN-10-3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niimi T, Kumagai C, Okano M, Kitagaw Y (1997) Differentiation-dependent expression of laminin-8 (α4β1γ1) mRNAs in mouse 3T3-L1 adipocytes. Matrix Biol 16:223–230

    Article  CAS  Google Scholar 

  39. Vaicik MK, Thyboll Kortesmaa J, Movérare-Skrtic S, Kortesmaa J, Soininen R, Bergström G, Ohlsson C, Chong LY, Rozell B, Emont M, Cohen RN, Brey EM, Tryggvason K (2014) Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain. PLoS ONE 10:e109854. https://doi.org/10.1371/journal.pone.0109854 (eCollection 2014)

    Article  CAS  Google Scholar 

  40. Mukherjee R, Kim SW, Park T, Choi MS, Yun JW (2015) Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int J Obes 39:1349–1358. https://doi.org/10.1038/ijo.2015.74

    Article  CAS  Google Scholar 

  41. Mukherjee R, Yun JW (2016) Pharmacological inhibition of galectin-1 by lactulose alleviates weight gain in diet-induced obese rats. Life Sci 148:112–117. https://doi.org/10.1016/j.lfs.2016.02.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (PIP0291), Agencia Nacional de Promoción Científica y Tecnológica of Argentina (PICT 2008-1826), and National Institutes of Health (R21 DK-113500, DGR). The funders had no role in study design, data analysis, decision to publish, or preparation of the manuscript. We thank J. Brandani for plasmids, A. Lago-Huvelle for help with immunofluorescence microscopy, and L. Barcos and F. Coluccio-Leskow for help with lentivirus production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del C. Vila.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 614 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielli, M., Romero, D.G., Martini, C.N. et al. MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes. Mol Cell Biochem 448, 299–309 (2018). https://doi.org/10.1007/s11010-018-3334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3334-8

Keywords

Navigation