Skip to main content
Log in

Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes?

  • Original Research Paper
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Based on published estimates of areal extent, thickness and dating of igneous rocks related to formation of the North Atlantic Volcanic Province, we calculate the magmatic production since the first reported magmatism at 70 Ma until present. We relate the magmatism to the Icelandic Plume and estimate the total volumetric production to 22.1 × 106 km3. The magmatic production varied significantly with time, with a clear maximum of 55.5 m3/s around continental break-up at ca. 54 Ma. The lowest production is estimated at 4 m3/s, increasing to 7 m3/s at ca. 23 Ma. Two other pulses with increased activity are found around 40 Ma and in the late Miocene (10–5 Ma). The variations in productivity are consistent with a plume pulsing with a periodicity of ca. 15 million years. The same periodicity and relative timing is found for the Hawaiian Plume. If confirmed, these observations suggest that both plumes originate within the thin boundary layer near the Core-Mantle Boundary. This hypothesis may imply periodic heating of the earth’s core with subsequent heat-release to the mantle and increased global plume activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barton AJ, White RS (1995) The Edoras Bank margin; continental break-up in the presence of a mantle plume. J Geol Soc Lond 152:971–974

    Google Scholar 

  • Barton AJ, White RS (1997) Crustal structure of Edoras Bank continental margin and mantle thermal anomalies beneath the North Atlantic. J Geophys Res 102:3109–3129

    Article  Google Scholar 

  • Bercovici D, Mahoney J (1994) Double flood basalts and plume separation at the 660-km discontinuity. Science 266:1367–1369

    Article  Google Scholar 

  • Birkenmajer K (1986) Tertiary tectonic deformation of lower Cretaceous dykes in a Precambrian terrane. Stud Geol Pol 89:31–44

    Google Scholar 

  • Breivik AJ, Mjelde R, Faleide JI, Murais Y (2006) Rates of continental break-up magmatism and seafloor spreading in the Norway Basin–Iceland Plume interaction. J Geophy Res 111:B07102. doi:10.1029/2005JB004004

    Article  Google Scholar 

  • Breivik AJ, Faleide JI, Mjelde R (2008) MORB hijacking by the Iceland plume. Geochem Geophys Geosyst doi: 10.1029/2007GC001750

  • Breivik AJ, Faleide JI, Mjelde R, Flueh ER (2009) Magma productivity and early seafloor spreading rate correlation on the northern Vøring Margin, Norway—constraints on mantle melting. Tectonophysics 468:206–223

    Article  Google Scholar 

  • Brekke H (2000) The tectonic evolution of the Norwegian Sea continental margin, with emphasis on the Vøring and Møre basins. In: Nøttvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ 167:327–378

  • Brooks CK, Gleadow AJW (1977) A fission-track age for the Skeargaard intrusion and the age of the East Greenland basalts. Geology 5:539–540

    Article  Google Scholar 

  • Bugge T, Prestvik T, Rokoengen K (1980) Lower Tertiary volcanic rocks off Kristiansund-Mid Norway. Mar Geol 35:215–220

    Article  Google Scholar 

  • Chambers LM, Pringle MS, Parrish RR (2005) Rapid formation of the small Isles Tertiary centre constrained by precise 40Ar/39Ar and U–Pb ages. Lithos 79:367–384

    Article  Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions and external consequences. Rev Geophys 32:1–36

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three different types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Article  Google Scholar 

  • Dickin AP (1981) Isotope geochemistry of Tertiary igneous rocks from the Isle of Skye, NW Scotland. J Petrol 22:155–189

    Google Scholar 

  • Dickin AP, Jones NW (1983) Isotope evidence for the age and origin of pitchstones and felsites, Isle of Eigg, NW Scotland. J Geol Soc Lond 140:691–700

    Article  Google Scholar 

  • Donn WL, Ninkovich D (1980) Rate of Cenozoic explosive volcanism in the North Atlantic Ocean inferred from deep sea cores. J Geophys Res 85:5455–5460

    Article  Google Scholar 

  • Eldholm E, Grue K (1994) North Atlantic volcanic margins: dimensions and production rates. J Geophys Res 99:2955–2968

    Article  Google Scholar 

  • Eldholm O, Thiede J, Taylor E (1989) Evolution of the Vøring Volcanic Margin. Proceedings ODP, Scientific Results 104, TX Ocean Drilling Program, College Station, pp 1033–1065

  • Fechner N, Jokat W (1996) Seismic refraction investigations on the crustal structure of the western Jameson Land basein, east Greenland. J Geophys Res 101:15867–15881

    Article  Google Scholar 

  • Fitton JG, Larsen LM, Saunders AD, Hardarson BS, Kempton PD (2000) Palaeogene continental to oceanic magmatism on the SE Greenland continental margin at 63°N: a review of the results of Ocean Drilling Program Legs 152 and 163. J Petrol 41:951–966

    Article  Google Scholar 

  • Forsyth DA, Morel AL, Huissier P, Asudeh I, Green AG (1986) Alpha Ridge and Iceland; products of the same plume? J Geodyn 6:197–214

    Article  Google Scholar 

  • Foulger GR, Natland JH, Anderson DL (2005) A source for Icelandic magmas in remelted Iapetus crust. J Volcanol Geotherm Res 141:23–44

    Article  Google Scholar 

  • Gamble JA (1979) The geochemistry and petrogenesis of dolerites and gabbros from Tertiary Central Complex of Slieve Gullion, North East Ireland. Contrib Mineral Petrol 69:5–19

    Article  Google Scholar 

  • Geoffroy L (2001) The structure of volcanic margins: some problematics from the North-Atlantic/Labrador-Baffin system. Mar Pet Geol 18:463–469

    Article  Google Scholar 

  • Gibson D, McCormick AG, Meighan IG, Halliday AN (1987) The British Tertiary Igneous Province: young Rb–Sr ages for the Mourne Mountains granites. Scott J Geol 23:221–225

    Google Scholar 

  • Gleadow AJW, Brooks CK (1979) Fission track dating, thermal histories and tectonics of igneous intrusions in East Greenland. Contrib Mineral Petrol 71:45–60

    Article  Google Scholar 

  • Gordon RG, Jurdy DM (1986) Cenozoic global plate motion. J Geophys Res 91:12389–12406

    Article  Google Scholar 

  • Gurnis M (1988) Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332:695–699

    Article  Google Scholar 

  • Hirschmann MM, Renne PR, McBirney AR (1997) 40Ar–39Ar dating of the Skaergaard intrusion. Earth Planet Sci Lett 146:645–658

    Article  Google Scholar 

  • Hitchen K, Ritchie JD (1993) New K-Ar ages, and a provisional chronology, for the offshore part of the British Tertiary Igneous Province. Scott J Geol 29:73–85

    Google Scholar 

  • Holbrook WS, Larsen HC, Korenaga J, Dahl-Jensen T, Reid ID, Kelemen PB, Hopper JR, Kent GM, Lizarralde D, Bernstein S, Detrick RS (2001) Mantle thermal structure and active upwelling during continental break-up in the North Atlantic. Earth Planet Sci Lett 190:251–266

    Article  Google Scholar 

  • Holm PM, Grandvuinet T, Friis J, Wilson JR, Barker AK, Plesner S (2008) An 40Ar–39Ar study of the Cape Verde hot spot: temporal evolution in a semistationary plate environment. J Geophys Res 113:B08201. doi:10.1029/2007JB005339

    Article  Google Scholar 

  • Hooft EEE, Brandsdottir B, Mjelde R, Shimamura H, Murai Y (2006) Asymmetric plume-ridge interaction around Iceland: the Kolbeinsey Ridge Iceland Seismic Experiment. Geochem Geophys Geosyst 7:1–26. doi:10.1029/2005GC001123

    Article  Google Scholar 

  • Hopper JR, Dahl-Jensen T, Holbrook WS, Larsen HC, Lizarralde D, Korenaga J, Kent GM, Kelemen PB (2003) Structure of the SE Greenland margin from seismic reflection and refraction data: implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening. J Geophys Res 108:2269. doi:10.1029/2002JB001996

    Article  Google Scholar 

  • Ito G, Lin J, Gable W (1996) Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic Ridge. Earth Planet Sci Lett 144:53–74

    Article  Google Scholar 

  • Jones SM, White N, Maclennan J (2002) V-shaped ridges around Iceland: implications for spatial and temporal patterns of mantle convection. Geochem Geophys Geosyst 3:1059. doi:10.129/2002GC000361

    Article  Google Scholar 

  • Karson JA, Brooks CK (1999) Structural and magmatic segmentation of the Tertiary East Greenland volcanic rifted margin. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics. Geol Soc Lond Spec Publ 164:313–338

  • King SC, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296

    Article  Google Scholar 

  • Kodaira S, Mjelde R, Sellevoll MA, Hirschleber HB, Iwasaki T, Kanazawa T, Shimamura H (1995) Crustal transect across the Lofoten volcanic passive continental margin, N. Norway, obtained by use of ocean bottom seismographs, and implications for its evolution. J Phys Earth 43:729–745

    Google Scholar 

  • Kodaira S, Mjelde R, Shimamura H, Gunnarsson K, Shiobara H (1997) Crustal structure of the Kolbeinsey Ridge, N. Atlantic, obtained by use of ocean bottom seismographs. J Geophys Res 102:3131–3151

    Article  Google Scholar 

  • Kodaira S, Mjelde R, Gunnarsson K, Shiobara H, Shimamura H (1998) Evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, over the past 22 million years. Terra Nova 10:27–31

    Article  Google Scholar 

  • Koppers AAP, Staudigel H, Wijbrans JR (2000) Dating crystalline groundmass separates of altered Cretaceous seamounts by the 40Ar/39Ar incremental heating technique. Chem Geol 166:139–158

    Article  Google Scholar 

  • Korenaga J, Holbrook WS, Kent GM, Detrick RS, Larsen HC, Hopper JR, Dahl-Jensen T (2000) Crustal structure of the Southeast Greenland margin from joint refraction and reflection seismic tomography. J Geophys Res 105:19163–19184

    Article  Google Scholar 

  • Larson RL (1991) Geological consequences of superplumes. Geology 19:963–966

    Article  Google Scholar 

  • Lawver LA, Müller RD (1994) Iceland hotspot track. Geology 22:311–314

    Article  Google Scholar 

  • Lundin E, Doré AG (2005) NE Atlantic break-up: a re-examination of the Iceland mantle plume model and the Atlantic-Arctic linkage. In: Doré AG, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives—Proceedings of the 6th Petroleum Geology Conference. Geol Soc Lond, pp 739–754

  • Maher HD (2001) Manifestations of the Cretaceous high Arctic large igneous province in Svalbard. J Geol 109:91–104

    Article  Google Scholar 

  • Mandler H, Jokat W (1998) The crustal structure of central east Greenland: results from combined land-sea seismic refraction experiments. Geophys J Int 135:63–76

    Article  Google Scholar 

  • Mjelde R, Sellevoll MA, Shimamura H, Iwasaki T, Kanazawa T (1992) A crustal study off Lofoten, N. Norway by use of 3-C ocean bottom seismographs. Tectonophysics 212:269–288

    Article  Google Scholar 

  • Mjelde R, Kodaira S, Shimamura H, Kanazawa T, Shiobara H, Berg EW, Riise O (1997) Crustal structure of the central part of the Vøring Basin, mid-Norway margin, from ocean bottom seismographs. Tectonophysics 277:235–257

    Article  Google Scholar 

  • Mjelde R, Digranes P, Shimamura H, Shiobara H, Kodaira S, Brekke H, Egebjerg T, Sørenes N, Thorbjørnsen T (1998) Crustal structure of the northern part of the Vøring Basin, mid-Norway margin, from wide-angle seismic and gravity data. Tectonophysics 293:175–205

    Article  Google Scholar 

  • Mjelde R, Digranes P, Van Schaack M, Shimamura H, Shiobara H, Kodaira S, Næss O, Sørenes N, Vågnes E (2001) Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data. J Geophys Res 106:6769–6791

    Article  Google Scholar 

  • Mjelde R, Breivik AJ, Raum T, Mittelstaedt E, Ito G, Faleide JI (2008a) Magmatic and tectonic evolution of the North Atlantic. J Geol Soc Lond 165:31–42

    Article  Google Scholar 

  • Mjelde R, Raum T, Breivik AJ, Faleide JI (2008b) Crustal transect across the North Atlantic. Mar Geophys Res (in press)

  • Mjelde R, Faleide JI, Breivik AJ, Raum T (2008c) Lower crustal composition and crustal lineaments on the Vøring Margin, NE Atlantic: a review. Tectonophysics (in press)

  • Moorbath S, Thompson RN (1980) Strontium isotope geochemistry and petrogenesis of the early Tertiary lava pile of the Isle of Skye, Scotland, and other basic rocks of the British Tertiary Province: an example of magma-crust interaction. J Petrol 21:295–321

    Google Scholar 

  • Mussett AE (1986) 40AR–39AR step-heating ages of the Tertiary igneous rocks of Mull, Scotland. J Geol Soc Lond 143:887–896

    Article  Google Scholar 

  • Mutter JC, Buck WR, Zehnder CM (1988) Convective partial melting, a model for the formation of thick basaltic sequences during the initiation of spreading. J Geophys Res 93:1031–1048

    Article  Google Scholar 

  • Nakagawa T, Tackley PJ (2004) Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection. Geophys Res Int 31:L16611. doi:10.1029/2004GL020648

    Google Scholar 

  • Noble RH, Macintyre RM, Brown PE (1988) Age constraints on Atlantic evolution: timing of magmatic activity along the E Greenland continental margin. J Geol Soc Spec Publ 39:201–214

    Article  Google Scholar 

  • O'Connor JM, Stoffers P, Wijbrans JR, Shannon PM, Morrissey T (2000) Evidence from episodic seamount volcanism from pulsing of the Iceland plume in the past 70 million years. Nature 408:954–958

    Article  Google Scholar 

  • Pearson DG, Emeleus CH, Kelley SP (1996) Precise 40Ar/39Ar age for the initiation of Palaeogene volcanism in the Inner Hebrides and its regional significance. J Geol Soc Lond 153:815–818

    Article  Google Scholar 

  • Price S, Brodie J, Whitham A, Kent R (1997) Mid-tertiary rifting and magmatism in the Traill Ø region, East Greenland. J Geol Soc Lond 154:419–434

    Article  Google Scholar 

  • Richardson KR, Smallwood JR, White RS, Snyder D, Maguire PKH (1998) Crustal structure beneath the Faeroe Islands and the Faeroe-Iceland Ridge. Tectonophysics 300:159–180

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102:10039–10054

    Article  Google Scholar 

  • Saunders AD, Fitton JG, Kerr AC, Norry MJ, Kent R.W (1997) The North Atlantic Igneous Province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces, AGU Geophys Monogr 100:45–93

  • Schlindwein V, Jokat W (1999) Structure and evolution of the continental crust of northern east Greenland from integrated geophysical studies. J Geophys Res 104:15227–15245

    Article  Google Scholar 

  • Schmidt-Aursch M, Jokat W (2005) The crustal structure of central East Greenland-I: from the Caledonian orogen to the Tertiary igneous province. Geophys J Int 160:736–752

    Article  Google Scholar 

  • Sigmundsson F (2006) Iceland geodynamics: crustal deformation and divergent plate tectonics. Springer, Berlin, p 209

    Google Scholar 

  • Sinton CW, Duncan RA (1998) 40Ar–39Ar ages of lavas from the Southeast Greenland margin, ODP Leg 152, and the Rockall Plateau, DSDP Leg 81. Proc Ocean Drill Prog Sci Res 152:387–402

    Google Scholar 

  • Sinton CW, Hitchen K, Duncan RA (1998) 40Ar–39Ar geochronology of silicic and basic volcanic rocks. Geol Mag 135:161–170

    Article  Google Scholar 

  • Smallwood JR, Staples RK, Richardson KR, White RS (1999) Crust generated above the Iceland mantle plume: from continental rift to oceanic spreading center. J Geophys Res 104:22885–22902

    Article  Google Scholar 

  • Storey M, Duncan RA, Pedersen AK, Larsen LM, Larsen HC (1998) 40Ar/39A geochronology of the West Greenland Tertiary volcanic province. Earth Planet Sci Lett 160:569–586

    Article  Google Scholar 

  • Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361:699–704

    Article  Google Scholar 

  • Tarduno JA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Late Cretaceous Arctic volcanism: tectonic and climatic connections. In: Am Geophys Union spring meeting abstracts. Washinton DC, Am Geophys Union

  • Tarduno JA, Duncan RA, Scholl DW, Cottrell RD, Steinberger B, Thordarson T, Kerr BC, Neal CR, Frey FA, Torii M, Carvallo C (2003) The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth`s mantle. Science 301:1064–1069

    Article  Google Scholar 

  • Tegner C, Duncan RA (1999) 40Ar–39Ar chronology for the volcanic history of the Southeast Greenland rifted margin. Proc Ocean Drill Prog Sci Res 163:53–62

    Google Scholar 

  • Tegner C, Duncan RA, Bernstein S, Brooks CK, Bird DK, Storey M (1998) 40Ar–39Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin: relation to flood basalts and the Iceland hotspot track. Earth Planet Sci Lett 156:75–88

    Article  Google Scholar 

  • Thompson P, Musset AE, Dagley P (1987) Revised 40Ar–39Ar age for granites of the Mourne Mountains, Ireland. Scott J Geol 23:215–220

    Article  Google Scholar 

  • Torsvik TH, Cocks LRM (2005) Norway in space and time: a Centennial cavalcade. Nor J Geol 85:73–86

    Google Scholar 

  • Torsvik TH, Van Der Voo R, Meert JG, Mosar J, Walderhaug HJ (2001) Reconstructions of the continents around the North Atlantic at about the 60th parallel. Earth Planet Sci Lett 187:55–69

    Article  Google Scholar 

  • Tsikalas F, Eldholm O, Faleide JI (2005) Crustal structure of the Lofoten-Vesterålen continental margin off Norway. Tectonophysics 404:151–174

    Article  Google Scholar 

  • Upton BGJ (1988) History of Tertiary Igneous activity in the N-Atlantic borderlands. In: Morton AC, Parson LM (eds) Early Tertiary Volcanism and the opening of the NE-Atlantic. Geol Soc Lond Spec Publ, pp 429–453

  • Upton BGJ, Emeleus CH, Rex DC, Thirlwall MF (1995) Early Tertiary magmatism in NE Greenland. J Geol Soc Lond 152:959–964

    Google Scholar 

  • Van Ark E, Lin J (2004) Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain. J Geophys Res 109:B11401. doi:10.1029/2003JB002949

    Article  Google Scholar 

  • Vogt PR (1971) Asthenospheric motion recorded by the ocean floor south of Iceland. Earth Planet Sci Lett 13:153–160

    Article  Google Scholar 

  • Vogt U, Makris J, O’Reilly BM, Hauser F, Readman PW, Jacob AWB, Shannon PM (1998) The Hatton Bank and continental margin: crustal structure from wide-angle seismic and gravity data. J Geophys Res 103:12545–12566

    Article  Google Scholar 

  • Voss M, Jokat W (2007) Continent-ocean transition and voluminous magmatic underplating derived from P-wave velocity modeling of the East Greenland continental margin. Geophys J Int 170:580–604

    Article  Google Scholar 

  • Weigel W, Flüh ER, Miller H, Butzke A, Dehghani GA, Gebhardt V, Harder I, Hepper J, Jokat W, Kläschen D, Kreymann S, Schüßler S, Zhao Z (1995) Investigations of the East Greenland continental margin between 70° and 72°N by deep seismic sounding and gravity studies. Mar Geophys Res 17:167–199

    Article  Google Scholar 

  • Weinberg RF, Podladchikov Y (1994) Diapiric ascent of magmas through power law crust and mantle. J Geophys Res 99:9543–9559

    Article  Google Scholar 

  • White RS, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Article  Google Scholar 

  • White RS, Smith LK, Roberts AW, Christie PAF, Kuznir NJ (2008) Lower-crustal intrusion on the North Atlantic continental margin. Nature 452:460–464

    Article  Google Scholar 

  • Yamagishi Y, Yanagisawa, T, Stegman D, Yamano Y (2006) Thermal state in the mantle modified by the effects of PPV phase transition. 10th Symp Study of the Earth’s Deep Interior, July 9–14, Prague, Czech Republic (abstract)

Download references

Acknowledgments

We thank engineers from the University of Bergen and engineers and scientists from Hokkaido University (HU) for invaluable participation in planning and executing the OBS surveys, on which much of these results are based. We acknowledge The Norwegian Petroleum Directorate (NPD), Statoil, Norsk Hydro, Total and the Norwegian Research Council (EUROMARGINS) for funding these projects. The present paper can to a large extent be attributed to the fruitful environment for scientific discussions the first author experienced during research stays at SOEST, Department of Geology and Geophysics, University of Hawaii (UH), and at Institute for Seismology and Volcanology, HU. We thank Dr. Asbjørn Breivik, University of Oslo, and Prof. Garrett Ito, SOEST, UH, for valuable discussions, Bent Ole Ruud for performing frequency analysis on the Iceland flux diagram, Beata Mjelde for drawing figures and Peter Clift, Andrew Kerr and one anonymous reviewer for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mjelde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mjelde, R., Faleide, J.I. Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes?. Mar Geophys Res 30, 61–72 (2009). https://doi.org/10.1007/s11001-009-9066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-009-9066-0

Keywords

Navigation