Skip to main content

Advertisement

Log in

Land cover change and socioecological influences on terrestrial carbon production in an agroecosystem

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

This study evaluated the contributions of land cover and land use change (LCLUC) and land management to landscape carbon production through a complex cause-effect path analysis of socioecological latent variables. Socioecological contributions to landscape carbon production are essential in landscape analysis, as their processes are both independent and interactive.

Objectives

We quantify the coherencies of social, economic, and environmental variables and their impact on net primary production (NPP) in an agroecosystem landscape. We ask whether LCLUC contributed to increased NPP and if land management and LCLUC play a more significant role than abiotic stressors on NPP.

Methods

We applied a socio-environmental system framework to evaluate anthropogenic and environmental processes in the Kalamazoo River Watershed in southwest Michigan, USA from 1987 to 2017. Structural composition and functional contribution to NPP were evaluated by land cover type. We synthesized remote sensing, gridded climate, social and biophysical data in a principal component analysis (PCA) to inform a partial least squares structural equation model (PLS-SEM).

Results

Land cover type contributed to anthropogenic processes. Cropland contributed to Land Management, forest and water contributed to Land Cover Change, and urban to the Regional Development construct. Anthropogenic activities contributed more to NPP than abiotic processes. Attitudes of environmental stewardship strongly related to land use change likelihood.

Conclusions

We disentangled anthropogenic and climatic changes’ contributions to terrestrial carbon production and the societal ties to potential carbon sequestration. No single landscape metric is suitable for all study areas; however, this framework is useful for a landscape-scale analysis of socio-environmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon request.

References

  • Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol 33(1):121–131

    Article  Google Scholar 

  • Abraha M, Hamilton SK, Chen J, Robertson GP (2018) Ecosystem carbon exchange on conversion of Conservation Reserve Program grasslands to annual and perennial cropping systems. Agric For Meteorol 253:151–160

  • Aguirre-Urreta MI, Rönkkö M (2018) Statistical inference with PLSc using bootstrap confidence intervals. MIS Q 42(3):1001–1020

    Article  Google Scholar 

  • Amirkhiz RG, John R, Swanson DL (2023) A Bayesian approach for multiscale modeling of the influence of seasonal and annual habitat variation on relative abundance of ring-necked pheasant roosters. Eco Inform 75:102003

    Article  Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data, vol 964. USGS Publications Warehouse

  • Arévalo P, Bullock EL, Woodcock CE, Olofsson P (2020) A suite of tools for continuous land change monitoring in Google Earth Engine. Front Clim 2:576740

    Article  Google Scholar 

  • Becker J, Ringle CM, Sarstedt M, Völckner F (2015) How collinearity affects mixture regression results. Mark Lett 26:643–659

    Article  Google Scholar 

  • Bhardwaj AK, Zenone T, Jasrotia P, Roberston GP, Chen J, Hamilton SK (2011) Water and energy footprints of bioenergy crop production on marginal lands. GCB Bioenergy 3(3):208–222

  • Bollen KA (1989) Structural equations with latent variables. Wiley, New York. https://doi.org/10.1002/9781118619179

    Book  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13(3):679–706

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2005) Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sens Environ 94(2):204–213

    Article  Google Scholar 

  • Castoriadis C (2008) The Political Ecology of southwest Michigan agriculture, 1837-2000. In: Redman CL, Foster DR (eds) Agrarian landscapes in transition. Oxford University Press, Oxford, p 298

    Google Scholar 

  • Chaney NW, Wood EF, McBratney AB, Hempel JW, Nauman TW, Brungard CW, Odgers NP (2016) POLARIS: a 30-meter probabilistic soil series map of the contiguous United States. Geoderma 274:54–67

    Article  CAS  Google Scholar 

  • Chen J, Brosofske KD, Noormets A, Crow TR, Bresee MK, Le Moine JM, Euskirchen ES, Mather SV, Zheng D (2004) A working framework for quantifying carbon sequestration in disturbed land mosaics. Environ Manag 33(1):S210–S221

    Google Scholar 

  • Chen J, John R, Shao C, Fan Y, Zhang Y, Amarjargal A, Brown DG, Qi J, Han J, Lafortezza R, Dong G (2015a) Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau. Environ Res Lett 10(8):085003

    Article  Google Scholar 

  • Chen J, John R, Zhang Y, Shao C, Brown DG, Batkhishig O, Amarjargal A, Ouyang Z, Dong G, Wang D, Qi J (2015b) Divergences of two coupled human and natural systems on the Mongolian Plateau. Bioscience 65(6):559–570

    Article  Google Scholar 

  • Chen J, Sciusco P, Ouyang Z, Zhang R, Henebry GM, John R, Roy DP (2019) Linear downscaling from MODIS to Landsat: connecting landscape composition with ecosystem functions. Landsc Ecol 34(12):2917–2934

    Article  Google Scholar 

  • Chen J, Ouyang Z, John R, Henebry GM, Groisman PY, Karnieli A, Pueppke S, Kussainova M, Amartuvshin A, Tulobaev A, Yespolov TI, Crank C, Kadhim A, Qi J, Gutman G (2020) Social-ecological systems across the Asian Drylands Belt (ADB), pp 191–225. https://doi.org/10.1007/978-3-030-30742-4_10

  • Chen J, John R, Yuan J, Mack EA, Groisman P, Allington G, Wu J, Fan P, De Beurs KM, Karnieli A, Gutman G, Kappas M, Dong G, Zhao F, Ouyang Z, Pearson AL, Sat B, Graham NA, Shao C, Qi J (2022) Sustainability challenges for the social- environmental systems across the Asian Drylands Belt. Environ Res Lett 17(2):023001

    Article  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54(6):535–545

    Article  Google Scholar 

  • Compton TJ, Goff TE, Townshend JRG (1985) African land-cover classification using satellite data. Science 227(4685):369–375

    Article  Google Scholar 

  • Conzen MP (ed) (2014) 2nd edn. Routledge, London

    Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8(5):691–703

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28(15):2031–2064

    Article  Google Scholar 

  • Daly C, Smith JI, Olson KV (2015) Mapping atmospheric moisture climatologies across the conterminous United States. PLoS ONE 10(10):e0141140

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewitz J, Survey U. S. G. (2021) National Land Cover Database (NLCD) 2019 Products (ver. 2.0, June 2021): U.S. Geological Survey data release. https://doi.org/10.5066/P9KZCM54

  • Diamantopoulos A (1994) Modelling with LISREL: a guide for the uninitiated. J Mark Manag 10(1–3):105–136

    Article  Google Scholar 

  • Diamantopoulos A, Sarstedt M, Fuchs C, Wilczynski P, Kaiser S (2012) Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective. J Acad Mark Sci 40(3):434–449

    Article  Google Scholar 

  • Dijkstra TK (2010) Latent variables and indices: Herman Wold’s basic design and partial least squares. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer Handbooks of Computational Statistics Series, vol 2. Springer, Berlin, pp 23–46

    Chapter  Google Scholar 

  • Dijkstra TK (2014) PLS’ Janus face–response to professor Rigdon’s ‘rethinking partial least squares modeling: in praise of simple methods. Long Range Plan 47(3):146–153

    Article  Google Scholar 

  • Dijkstra TK, Henseler J (2015) Consistent partial least squares path modeling. MIS Q 39(2):297–316

    Article  Google Scholar 

  • Dwyer J, Roy D, Sauer B, Jenkerson C, Zhang H, Lymburner L (2018) Analysis ready data enabling analysis of the Landsat archive. Remote Sens 10(9):1363

    Article  Google Scholar 

  • Eisenhauer N, Bowker M, Grace J, Powell J (2015) From patterns to causalunderstanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58(2):65–72

    Article  Google Scholar 

  • Elsawah S, Filatova T, Jakeman AJ, Kettner AJ, Zellner ML, Athanasiadis IN, Hamilton SH, Axtell RL, Brown DG, Gilligan JM, Janssen MA, Robinson DT, Rozenberg J, Ullah IIT, Lade SJ (2020) Eight grand challenges in socio-environmental systems modeling. Socio-Environ Syst Model 2:16226

    Google Scholar 

  • Euskirchen ES, Bennett AP, Breen AL, Genet H, Lindgren MA, Kurkowski TA, McGuire AD, Rupp TS (2016) Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environ Res Lett 11(10):105003

    Article  Google Scholar 

  • Falcone JA (2021) Estimates of county-level nitrogen and phosphorus from fertilizer and manure from 1950 through 2017 in the conterminous United States. In: U.S. Geological Survey Open-File Report 2020–1153. https://doi.org/10.3133/ofr20201153

  • Fan Y, Chen J, Shirkey G, John R, Wu SR, Park H, Shao C (2016) Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol Process 5(1):1–12

    Article  Google Scholar 

  • Fan P, Ouyang Z, Duong D, Thuy T, Nguyen H, Park H, Chen J (2019) Urbanization, economic development, environmental and social changes in transitional economies: Vietnam after Doimoi. Landsc Urban Plan 187:145–155

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • FSA USDA (2018) CRP enrollment and rental payments by county, 1986–2019

  • Gefen D, Straub D, Boudreau M (2000) Structural equation modeling and regression: guidelines for research practice. Commun Assoc Inf Syst 4(1):7

    Google Scholar 

  • Gergel SE, Turner MG (eds) (2017) 2nd edn. Springer, New York. https://doi.org/10.1007/978-1-4939-6374-4_20

    Book  Google Scholar 

  • Giannico V, Spano G, Elia M, Este MD, Sanesi G, Lafortezza R (2021) Green spaces, quality of life, and citizen perception in European cities. Environ Res 196:110922

    Article  CAS  PubMed  Google Scholar 

  • Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Grace JB, Anderson M, Olff H, Sheiner SM (2010) On the specification of structural equation models for ecological systems. Ecol Monogr 80(1):67–87

    Article  Google Scholar 

  • Guzman J, Golabi MH (2017) Agroecosystem net primary productivity and carbon footprint. In: Al-Kaisi MM, Lowery B (eds) Soil health and intensification of agroecosytems. Elsevier Inc, Amsterdam, pp 215–230. https://doi.org/10.1016/B978-0-12-805317-1.00010-5

    Chapter  Google Scholar 

  • Haenlein M, Kaplan AM (2004) A beginner’s guide to partial least squares analysis. Underst Stat 3(4):283–297

    Article  Google Scholar 

  • Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed, a silver bullet. J Mark Theory Pract 19(2):139–151

    Article  Google Scholar 

  • Hair JF, Hult GTM, Ringle CM, Sarstedt M, Danks NP, Ray S (2021) Partial least squares structural equation modeling (PLS-SEM ) using R: a workbook. Springer, New York. https://doi.org/10.1007/978-3-030-80519-7

    Book  Google Scholar 

  • Harden CP (2012) Framing and reframing questions of human-environment interactions. Ann Assoc Am Geogr 102(4):737–747

    Article  Google Scholar 

  • Hemes KS, Runkle BRK, Novick KA, Baldocchi DD, Field CB (2021) An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environ Sci Technol 55(6):3494–3504

    Article  CAS  PubMed  Google Scholar 

  • Henseler J, Ringle CM, Sarstedt M (2015) A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci 1:115–135

    Article  Google Scholar 

  • Hicke JA, Lobell DB (2004) Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information. Geophys Res Lett 31(20)

  • Homer C, Dewitz J, Jin S, Xian G, Costello C, Danielson P, Gass L, Funk M, Wickham J, Stehman S, Auch R, Riitters K (2020) Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J Photogramm Remote Sens 162:184–199

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC (2019) 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. In: Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko A, Shermanau Y, Federici P (eds), vol 2. IPCC. https://doi.org/10.21513/0207-2564-2019-2-05-13

  • Jelinski DE, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landsc Ecol 11(3):129–140

    Article  Google Scholar 

  • Jin S, Homer C, Yang L, Danielson P, Dewitz J, Li C, Zhu Z, Xian G, Howard D (2019) Overall methodology design for the United States National Land Cover Database 2016 products. In: Remote Sensing, vol 11, issue 24. https://doi.org/10.3390/rs11242971

  • Jöreskog KG (1971) Simultaneous factor analysis in several populations. Psychometrika 36(4):409–426

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Measur 20(1):141–151

    Article  Google Scholar 

  • Kassambara A, Mundt F (2020)factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7

  • Kolluru V, John R, Chen J, Jarchow M, Amirkhiz RG (2022a) Untangling the impacts of socioeconomic and climatic changes on vegetation greenness and productivity in Kazakhstan. Environ Res Lett 17:095007

    Article  Google Scholar 

  • Kolluru V, John R, Chen J, Xiao J, Amirkhiz RG, Giannico V, Kussainova M (2022b) Optimal ranges of social-environmental drivers and their impacts on vegetation dynamics in Kazakhstan. Sci Total Environ 847:157562

    Article  Google Scholar 

  • Kramer DB, Hartter J, Boag AE, Jain M, Stevens K, Nicholas KA, McConnell WJ, Liu J (2017) Top 40 questions in coupled human and natural systems (CHANS) research. Ecol Soc 22(2):44

    Article  Google Scholar 

  • Kugler TA, Grace K, Wrathall DJ, Sherbinin AD, Riper DV, Aubrecht C, Comer D, Adamo SB, Cervone G, Engstrom R, Hultquist C, Gaughan AE, Linard C, Moran E, Stevens F, Tatem AJ, Tellman B, Van Den Hoek J (2019) People and pixels 20 years later: the current data landscape and research trends blending population and environmental data. Popul Environ 41:209–234

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist H, Agbola SB, Angelsen A, Bruce JW, Coomes O, Dirzo R, Fisher G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269

    Article  Google Scholar 

  • Lausch A, Blaschke T, Haase D, Herzog F, Syrbe RU, Tischendorf L, Walz U (2015) Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol Model 295:31–41

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Lind-Riehl J, Jeltema S, Morrison M, Shirkey G, Mayer AL, Rouleau M, Winkler R (2015) Family legacies and community networks shape private forest management in the western Upper Peninsula of Michigan (USA). Land Use Policy 45:95–102

    Article  Google Scholar 

  • Liu J, Hull V, Batistella M, deFries R, Dietz T, Fu F, Hertel TW, Cesar Izaurralde R, Lambin EF, Li S, Martinelli LA, McConnell WJ, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de RochaSimmons GMCS, Zhu C (2013) Framing sustainability in a telecoupled world. Ecol Soc 18(2):180226

    Article  Google Scholar 

  • Liu J, Herzberger A, Kapsar K, Carlson AK, Connor T (2019) What is telecoupling? In: Telecoupling. Springer, New York, pp 19–48. https://doi.org/10.1007/978-3-030-11105-2_2

  • Mason CH, Perreault WD Jr (1991) Collinearity, power, and interpretation of multiple regression analysis. J Mark Res 28(3):268–280

    Article  Google Scholar 

  • McDonald RP (1996) Path analysis with composite variables. Multivar Behav Res 31(2):239–270

  • Milesi C, Elvidge CD, Nemani RR, Running SW (2003) Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens Environ 86:401–410

    Article  Google Scholar 

  • Monecke A, Leisch F (2012) semPLS: structural equation modeling using partial least squares. J Stat Softw 48(3):1–32

    Article  Google Scholar 

  • Moro Rosso LH, de Borja Reis A, Correndo AA, Ciampitti IA (2021a) Retrieving POLARIS data using R-software (V2 ed.). Harvard Dataverse. https://doi.org/10.7910/DVN/DCZ0N3

  • Moro Rosso LH, de Borja Reis AF, Correndo AA, Ciampitti IA (2021b) XPolaris: an R-package to retrieve United States soil data at 30-meter resolution. BMC Res Notes 14(1):1–3

    Article  Google Scholar 

  • Munoz RT, Brady S, Brown V (2017) The psychology of resilience: a model of the relationship of locus of control to hope among survivors of intimate partner violence. Traumatology 23(1):102

  • Nitzl C, Roldan JL, Cepeda G (2016) Mediation analysis in partial least squares path modeling: helping researchers discuss more sophisticated models. Ind Manag Data Syst 116(9):1849–1864

    Article  Google Scholar 

  • Novick KA, Metzger S, Anderegg WRL, Barnes M, Cala DS, Guan K, Hemes KS, Hollinger DY, Kumar J, Litvak M, Lombardozzi D, Normile CP, Oikawa P, Runkle BRK, Torn M, Wiesner S (2022) Informing nature-based climate solutions for the United States with the best-available science. Glob Change Biol 28(12):3778–3794

    Article  Google Scholar 

  • Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57

    Article  Google Scholar 

  • Park H, Fan P, John R, Chen J (2017) Urbanization on the Mongolian Plateau after economic reform: changes and causes. Appl Geogr 86:118–127

    Article  Google Scholar 

  • Potapov P, Turubanova S, Hansen MC, Tyukavina A, Zalles V, Khan A, Song X-P, Pickens A, Shen Q, Cortez J (2022) Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat Food 3(1):19–28

    Article  PubMed  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rigdon EE (2012) Rethinking partial least squares path modeling: in praise of simple methods. Long Range Plan 45(5–6):341–358

    Article  Google Scholar 

  • Rigdon EE, Sarstedt M, Ringle C (2020) On comparing results from CB-SEM and PLS-SEM: five perspectives and five recommendations. J Res Manag 39(3):4–16

    Google Scholar 

  • Robertson GP, Hamilton SK, Paustian K, Smith P (2022) Land-based climate solutions for the United States. Glob Change Biol. https://doi.org/10.1111/gcb.16267

    Article  Google Scholar 

  • Robinson NP, Allred BW, Smith WK, Jones MO, Moreno A, Erickson TA, Naugle DE, Running SW (2018) Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote Sens Ecol Conserv 4(3):264–280

    Article  Google Scholar 

  • Rudy AP, Harris CK, Thomas BJ, Worosz MR, Kaplan SSK, O’Donnell E (2008) The Political Ecology of southwest Michigan agriculture. In: Redman CL, Foster DR (eds) Agrarian landscapes in transition. Oxford University Press Inc, Oxford, p 298

    Google Scholar 

  • Ruggles S, Flood S, Goeken R, Schouweiler M, Sobek M (2022) IPUMS USA: Version 12.0 . IPUMS

  • Sciusco P, Chen J, Abraha M, Lei C, Robertson GP, Zhang R, Lafortezza R, Shirkey G, Ouyang Z, Zhang R, John R (2020) Spatiotemporal variations of albedo due to land use: contributions to global warming impacts in managed agricultural landscapes. Landsc Ecol 35(6):1385–1402

    Article  Google Scholar 

  • Sciusco P, Chen J, Giannico V, Abraha M, Lei C, Shirkey G, Yuan J, Robertson GP (2022) Albedo-Induced global warming impact at multiple temporal scales within an Upper Midwest USA Watershed. Land 11(2):283

    Article  Google Scholar 

  • Schneider A, Logan KE, Kucharik CJ (2012) Impacts of urbanization on ecosystem goods and services in the U.S. Corn Belt Ecosyst 15:519–541

    CAS  Google Scholar 

  • Shao C, Chen J, Chu H, Lafortezza R, Dong G, Abraha M, Batkhishig O, John R, Ouyang Z, Zhang Y, Qi J (2017) Grassland productivity and carbon sequestration in Mongolian grasslands: the underlying mechanisms and nomadic implications. Environ Res 159:124–134

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sarstedt M, Shmueli G, Kim KH, Thiele KO (2019) PLS-based model selection: the role of alternative explanations in information systems research. J Assoc Inf Syst 20(4):4

    Google Scholar 

  • Shirkey G, John R, Chen J, Dahlin K, Abraha M, Sciusco P, Lei C, Reed DE (2022) Fine resolution remote sensing spectra improves estimates of gross primary production of croplands. Agric For Meteorol 326:109175

    Article  Google Scholar 

  • Spies TA, Long JW, Stine P, Cerveny L, Marcot BG, Reeves G, Hessburg PF, Lesmeister D, Reilly MJ, Raphael MG, Davis RJ (2018) Integrating ecological and social science to inform land management in the area of the Northwest Forest Plan. In: Synthesis of science to inform land management within the Northwest Forest Plan Area. Gen. Tech. Rep. PNW-GTR-966. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, pp 919–1020

  • Streukens S, Leroi-Werelds S (2016) Bootstrapping and PLS-SEM: a step-by-step guide to get more out of your bootstrap results. Eur Manag J 34(6):618–632

    Article  Google Scholar 

  • Thoen GF (1990) Soil survey of Barry County, Michigan. United States Department of Agriculture Soil  Conservation Service, p 187

  • Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251

    Article  Google Scholar 

  • Tian L, Chen J (2022) Urban expansion inferenced by ecosystem production on the Qinghai-Tibet plateau. Environ Res Lett 17(3):035001

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–2849

    Article  PubMed  Google Scholar 

  • USDA National Agricultural Statistics Service (2022) Census of Agriculture. http://www.nass.usda.gov/CensusofAgriculture/index.asp

  • Utterback DF, Charles LE, Schnorr TM, Tiesman HM, Storey E, Vossenas P (2012) Occupational injuries, illnesses, and fatalities among workers in the services sector industries: 2003 to 2007. J Occup Environ Med 54(1):31–41

    Article  PubMed  Google Scholar 

  • Van der Schrier G, Barichivich J, Briffa K, Jones P (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res 118:4025–4048

    Article  Google Scholar 

  • Varble S, Secchi S, Druschke CG (2016) An examination of growing trends in land tenure and conservation practice adoption: results from a farmer survey in Iowa. Environ Manag 57(2):318–330

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17(12):2335–2351

    Article  Google Scholar 

  • Wen H, Chen J, Wang Z (2020) Disproportioned performances of protected areas in the Beijing-Tianjin-Hebei region. Sustainability 12(16):1–15

    Article  Google Scholar 

  • Wickham J, Stehman SV, Sorenson DG, Gass L, Dewitz JA (2021) Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sens Environ 257:112357

    Article  Google Scholar 

  • Wiesner S, Desai AR, Duff AJ, Metzger S, Stoy PC (2022) Quantifying the natural climate solution potential of agricultural systems by combining eddy covariance and remote sensing. JGR Biogeosci 127:e2022JG006895

    Article  Google Scholar 

  • Wu J (2006) Landscape ecology, cross-disciplinarity, and sustainability science. Landsc Ecol 21(1):1–4

    Article  CAS  Google Scholar 

  • Yang D, Fu CS, Smith AC, Yu Q (2017) Open land-use map: a regional land-use mapping strategy for incorporating OpenStreetMap with Earth observations. Geo-Spatial Inf Sci 20(3):269–281

    Article  Google Scholar 

  • Yang L, Jin S, Danielson P, Homer C, Gass L, Bender SM, Case A, Costello C, Dewitz J, Fry J, Funk M, Granneman B, Liknes GC, Rigge M, Xian G (2018) A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J Photogramm Remote Sens 146:108–123

    Article  Google Scholar 

  • Yang L, Shen F, Zhang L, Cai Y, Yi F, Zhou C (2021) Quantifying influences of natural and anthropogenic factors on vegetation changes using structural equation modeling: a case study in Jiangsu Province, China. J Clean Prod 280:124330

    Article  Google Scholar 

  • Zhao T, Brown DG, Bergen KM (2007) Increasing gross primary production (GPP) in the urbanizing landscapes of southeastern Michigan. Photogramm Eng Remote Sens 73(10):1159–1167

    Article  Google Scholar 

  • Zimmerer KS (2010) Retrospective on nature–society geography: tracing trajectories (1911–2010) and reflecting on translations. Ann Assoc Am Geogr 100(5):1076–1094

    Article  Google Scholar 

  • Zimmerer KS, Lambin EF, Vanek SJ (2018) Smallholder telecoupling and potential sustainability. Ecol Soc 23(1):30

    Article  Google Scholar 

Download references

Acknowledgements

We thank William Baule for contributing growing season length data for our analysis; Kelsey Watson and Kaylee Peterson for transposing census and stakeholder survey data; and Cheyenne Lei and Pietro Sciusco for statistical consultation. This work was supported by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-FC02-07ER64494.

Funding

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1848739 and the NASA Carbon Cycle & Ecosystems program Grant No. NNX17AE16G.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. GS, LTC and VK performed data collection; GS and MC performed analysis; and GS performed material preparation and the first draft of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Gabriela Shirkey.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirkey, G., John, R., Chen, J. et al. Land cover change and socioecological influences on terrestrial carbon production in an agroecosystem. Landsc Ecol 38, 3845–3867 (2023). https://doi.org/10.1007/s10980-023-01647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01647-5

Keywords

Navigation