Skip to main content

Latent Variables and Indices: Herman Wold’s Basic Design and Partial Least Squares

  • Chapter
  • First Online:
Handbook of Partial Least Squares

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

In this chapter it is shown that the PLS-algorithms typically converge if the covariance matrix of the indicators satisfies (approximately) the “basic design”, a factor analysis type of model. The algorithms produce solutions to fixed point equations; the solutions are smooth functions of the sample covariance matrix of the indicators. If the latter matrix is asymptotically normal, the PLS-estimators will share this property. The probability limits, under the basic design, of the PLS-estimators for loadings, correlations, multiple R’s, coefficients of structural equations et cetera will differ from the true values. But the difference is decreasing, tending to zero, in the “quality” of the PLS estimators for the latent variables. It is indicated how to correct for the discrepancy between true values and the probability limits. We deemphasize the “normality”-issue in discussions about PLS versus ML: in employing either method one is not required to subscribe to normality; they are “just” different ways of extracting information from second-order moments.

We also propose a new “back-to-basics” research program, moving away from factor analysis models and returning to the original object of constructing indices that extract information from high-dimensional data in a predictive, useful way. For the generic case we would construct informative linear compounds, whose constituent indicators have non-negative weights as well as non-negative loadings, satisfying constraints implied by the path diagram. Cross-validation could settle the choice between various competing specifications. In short: we argue for an upgrade of principal components and canonical variables analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York: Wiley.

    MATH  Google Scholar 

  • Bekker, P. A., & Dijkstra, T. K. (1990). On the nature and number of the constraints on the reduced form as implied by the structural form. Econometrica, 58 , 507–514.

    Article  MATH  MathSciNet  Google Scholar 

  • Bekker, P. A., Merckens, A. , & Wansbeek, T. J. (1994). Identification, Equivalent models, and computer algebra. Boston: Academic.

    MATH  Google Scholar 

  • Copson, E. T. (1968). Metric spaces. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Cox, D. R., & Wermuth, N. (1998). Multivariate dependencies- models, analysis and interpretation. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Dijkstra, T. K. (1981). Latent variables in linear stochastic models, PhD-thesis, (second edition (1985), Amsterdam: Sociometric Research Foundation).

    Google Scholar 

  • Dijkstra, T. K. (1982). Some comments on maximum likelihood and partial least squares methods, Research Report UCLA, Dept. Psychology, a shortened version was published in 1983.

    Google Scholar 

  • Dijkstra, T. K. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22 , 67–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Dijkstra, T. K. (1988). On model uncertainty and its statistical implications. Heidelberg: Springer.

    MATH  Google Scholar 

  • Dijkstra, T. K. (1989). Reduced form estimation, hedging against possible misspecification. International Economic Review, 30(2), 373–390.

    Article  MATH  MathSciNet  Google Scholar 

  • Dijkstra, T. K. (1990). Some properties of estimated scale invariant covariance structures. Psychometrika, 55 , 327–336.

    Article  MATH  MathSciNet  Google Scholar 

  • Dijkstra, T. K. (1992). On statistical inference with parameter estimates on the boundary of the parameter space. British Journal of Mathematical and Statistical Psychology, 45, 289–309.

    MATH  MathSciNet  Google Scholar 

  • Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometric regression tools. Technometrics, 35, 109–135.

    Article  MATH  Google Scholar 

  • Gantmacher, F. R. (1977). The theory of matrices, Vol. 1. New York: Chelsea.

    Google Scholar 

  • Geisser, S. (1993). Predictive inference: an introduction.New York: Chapman&Hall.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2002). The elements of statistical learning. New York: Springer.

    Google Scholar 

  • Jöreskog, K. G., & Wold, H. O. A. (Eds.), (1982). Systems under indirect observation, Part II. Amsterdam: North-Holland.

    Google Scholar 

  • Kagan, A. M., Linnik, Y. V., & Rao, C. R. (1973). Characterization problems in mathematical statistics. New York: Wiley.

    MATH  Google Scholar 

  • Kaplan, A. (1946). Definition and specification of meaning. The Journal of Philosophy, 43, 281–288.

    Article  Google Scholar 

  • Kaplan, A. (1964). The conduct of inquiry. New York: Chandler.

    Google Scholar 

  • Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58, 433–451.

    Article  MATH  MathSciNet  Google Scholar 

  • Leamer, E. E. (1978). Specification searches. New York: Wiley.

    MATH  Google Scholar 

  • McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239–270.

    Article  Google Scholar 

  • Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several variables. New York: Academic.

    MATH  Google Scholar 

  • Schrijver, A. (2004). A course in combinatorial optimization. Berlin: Springer.

    Google Scholar 

  • Schneeweiss, H., & Mathes, H. (1995). Factor analysis and principal components. Journal of Multivariate Analysis, 55, 105–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Stone, M., & Brooks, R. J. (1990). Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. Journal of the Royal Statistical Society, Series B (Methodological), 52, 237–269.

    Google Scholar 

  • Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modelling. Computational Statistics & Data Analysis, 48, 159–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Wold, H. O. A. (1966). Nonlinear estimation by iterative least squares procedures. In David, F. N. (Ed.), Research Papers in statistics, Festschrift for J. Neyman, (pp. 411–414). New York: New York.

    Google Scholar 

  • Wold, H. O. A. (1975). Path models with latent variables: the NIPALS approach. In H. M. Blalock, A., Aganbegian, A., F. M.Borodkin, R. Boudon, V. Capecchi, (Eds.), Quantitative Sociology, (pp. pp. 307–359). New York: Academic.

    Google Scholar 

  • Wold, H. O. A. (1982). Soft modelling: the basic design and some extensions. in Jöreskog, K. G., & Wold, H. O. A. (eds), Systems under indirect observation, Part II, pp. 1–5. Amsterdam: Northholland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo K. Dijkstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dijkstra, T.K. (2010). Latent Variables and Indices: Herman Wold’s Basic Design and Partial Least Squares. In: Esposito Vinzi, V., Chin, W., Henseler, J., Wang, H. (eds) Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32827-8_2

Download citation

Publish with us

Policies and ethics