Skip to main content

Advertisement

Log in

Landscape complementation is a driver of bumble bee (Bombus sp.) abundance in the Canadian Rocky Mountains

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Land use change is a major factor influencing biodiversity, but the mechanisms that drive species losses require further examination. Habitat loss often reduces biodiversity, but habitat fragmentation can increase biodiversity when examined independently. Processes driving this pattern remain largely unclear.

Objectives

We aimed to determine the effects of habitat fragmentation on bumble bee populations after controlling for habitat amount, and to examine possible mechanisms behind observed effects.

Methods

We sampled 22 species of bumble bees (Bombus sp.) across 50 unique sites located throughout the Canadian Rockies using a sampling design that minimized correlations between amount and spatial arrangement of land covers that may represent important habitat for bees. We modeled bumble bee abundance, species richness and diversity as a function of land cover metrics.

Results

Effects of land cover fragmentation were dependent on both the measure of fragmentation used, and landscape scale. Bumble bee abundance was higher where nesting habitat (forest) and foraging habitat (grassland) were found adjacent to each other within 300 m, suggesting a landscape complementation effect where bees benefit from having access to both land cover types in proximity to one another. Having available habitat split into a greater number of patches was detrimental when considering the immediate area (0–300 m), but beneficial when quantified in more distant areas (300–600 m).

Conclusions

Landscape complementation may be an important component behind positive fragmentation effects. Estimates of multiple measures of fragmentation are important when testing the impacts of land cover and landscape changes on species abundance and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Specimens collected as part of this research are being stored in the University of Calgary Invertebrate Collection. Data from this manuscript is available in Dryad: https://doi.org/10.5061/dryad.pg4f4qrrc.

Code availability

Code available upon request to lead author.

References

  • ABMI—Alberta Biodiversity Monitoring Institute (2013) ABMI wall-to-wall land cover map 2010 Version 10. https://www.abmi.ca/home/data-analytics/da-top/da-product-overview/Data-Archive/Land-Cover.html. Accessed 16 April 2019

  • Acosta CA, Robertson DN (2002) Diversity in coral reef fish communities: the effects of habitat patchiness revisited. Mar Ecol Prog Ser 227:87–96

    Article  Google Scholar 

  • Altamirano A, Valladares G, Kuzmanich N, Salvo A (2016) Galling insects in a fragmented forest: incidence of habitat loss, edge effects and plant availability. J Insect Conserv 20:119–127

    Article  Google Scholar 

  • Bailey D, Schmidt-Entling MH, Eberhart P, Herrmann JD, Hofer G, Kormann U, Herzog F (2010) Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. J Appl Ecol 47:1003–1013

    Article  Google Scholar 

  • Barding EE, Nelson TA (2008) Raccoons use habitat edges in Northern Illinois. Am Midl Nat 159:394–402

    Article  Google Scholar 

  • Betts MG, Hadley AS, Kormann U (2019) The landscape ecology of pollination. Landscape Ecol 34:961–966

    Article  Google Scholar 

  • Bosco L, Wan HY, Cushman SA, Arlettaz R, Jacot A (2019) Separating the effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework. Landscape Ecol 34:105–117

    Article  Google Scholar 

  • Bowers MA (1985) Bumble bee colonization, extinction, and reproduction in subalpine meadows in northeastern Utah. Ecology 66:914–927

    Article  Google Scholar 

  • Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416

    Article  Google Scholar 

  • Bürkner P-C (2017) brms: An R package for bayesian multilevel models using Stan. J Statist Softw 80:1–28

    Article  Google Scholar 

  • Bürkner P-C (2018) Advanced bayesian multilevel modeling with the R package brms. R J 10:395–411

    Article  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch J, Cordes N, Solter LF, Griswold T, Robinson GE (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron SA, Sadd BM (2020) Global trends in bumble bee health. Annu Rev Entomol 65:209–232

    Article  CAS  PubMed  Google Scholar 

  • Charman TG, Sears J, Green RE, Bourke AFG (2010) Conservation genetics, foraging distance and nest density of the scarce Great Yellow Bumblebee (Bombus distinguendus). Mol Ecol 19:2661–2674

    Article  PubMed  Google Scholar 

  • Cook WM, Yao J, Foster BL, Holt RD, Patrick LB (2005) Secondary succession in an experimentally fragmented landscape: community patterns across space and time. Ecology 86:1267–1279

    Article  Google Scholar 

  • Cresswell JE, Osborne J, Goulson D (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecol Entomol 25:249–255

    Article  Google Scholar 

  • Darvill B, Knight ME, Goulson D (2004) Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107:471–478

    Article  Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation Per Se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L (2019) Habitat fragmentation: a long and tangled tale. Glob Ecol Biogeogr 28:33–41

    Article  Google Scholar 

  • Fahrig L (2020) Why do several small patches hold more species than few large patches? Glob Ecol Biogeogr 29:615–628

    Article  Google Scholar 

  • Fardila D, Kelly LT, Moore JL, McCarthy MA (2017) A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biol Cons 212:130–138

    Article  Google Scholar 

  • Fletcher RJ, Didham RK, Banks-leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018a) Is habitat fragmentation good for biodiversity? Biol Cons 226:9–15

    Article  Google Scholar 

  • Fletcher RJ, Reichert BE, Holmes K (2018b) The negative effects of habitat fragmentation operate at the scale of dispersal. Ecology 99:2176–2186

    Article  PubMed  Google Scholar 

  • Gavish Y, Ziv Y, Rosenzweig ML (2012) Decoupling fragmentation from habitat loss for spiders in patchy agricultural landscapes. Conserv Biol 26:150–159

    Article  PubMed  Google Scholar 

  • Geib JC, Strange JP, Galen A (2015) Bumble bee nest abundance, foraging distance, and host-plant reproduction: implications for management and conservation. Ecol Appl 25:768–778

    Article  PubMed  Google Scholar 

  • González E, Salvo A, Valladares G (2017) Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest. Insect Science 24:891–901

    Article  PubMed  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  CAS  PubMed  Google Scholar 

  • Gräler B, Pebesma E, Heuvelink G (2016) Spatio-Temporal interpolation using gstat. R J 8:204–218

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzales A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052–e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddad NM, Gonzalez A, Brudvig LA, Burt MA, Levey DJ, Damschen EI (2017) Experimental evidence does not support the Habitat Amount Hypothesis. Ecography 40:48–55

    Article  Google Scholar 

  • Hadley AS, Betts MG (2016) Refocusing habitat fragmentation research using lessons from the last decade. Curr Landsc Ecol Reports 1:55–66

    Article  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Heino J, Mykrä H, Kotanen J (2008) Weak relationships between landscape characteristics and multiple facets of stream macroinvertebrate biodiversity in a boreal drainage basin. Landscape Ecol 23:417–426

    Article  Google Scholar 

  • Herrmann JD, Haddad NM, Levey DJ (2017) Testing the relative importance of local resources and landscape connectivity on Bombus impatiens (Hymenoptera, Apidae) colonies. Apidologie 48:545–555

    Article  Google Scholar 

  • Hesselbarth MHK, Sciaini M, With KA, Wiegand K, Nowosad J (2019) landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42:1648–1657

    Article  Google Scholar 

  • Hijmans RJ (2019) raster: geographic data analysis and modeling. https://cran.r-project.org/package=raster

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500

    Article  PubMed  Google Scholar 

  • Jamoneau A, Sonnier G, Chabrerie O, Closset-Kopp D, Saguez R, Gallet-Moron E, Decocq G (2011) Drivers of plant species assemblages in forest patches among contrasted dynamic agricultural landscapes. J Ecol 99:1152–1161

    Article  Google Scholar 

  • Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180

    Article  CAS  PubMed  Google Scholar 

  • Liczner AR, Colla SR (2019) A systematic review of the nesting and overwintering habitat of bumble bees globally. J Insect Conserv 23:787–801

    Article  Google Scholar 

  • Lindenmayer DB, Wood J, McBurney L, Blair D, Banks SC (2015) Single large versus several small: The SLOSS debate in the context of bird responses to a variable retention logging experiment. For Ecol Manage 339:1–10

    Article  Google Scholar 

  • Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landscape Ecol 32:1895–1906

    Article  Google Scholar 

  • Liu J, Vellend M, Wang Z, Yu M (2018) High beta diversity among small islands is due to environmental heterogeneity rather than ecological drift. J Biogeogr 45:2252–2261

    Article  Google Scholar 

  • Mallinger RE, Gibbs J, Gratton C (2016) Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods. Landscape Ecol 31:1523–1535

    Article  Google Scholar 

  • Mandelik Y, Winfree R, Neeson T, Kremen C (2012) Complementary habitat use by wild bees in agro-natural landscapes. Ecol Appl 22:1535–1546

    Article  PubMed  Google Scholar 

  • Martin CA (2018) An early synthesis of the habitat amount hypothesis. Landscape Ecol 33:1831–1835

    Article  Google Scholar 

  • Martin EA, Dainese M, Clough Y, Báldi A, Bommarco R, Gagic V, Garratt MPD, Holzschuh A, Kleijn D, Kovács-Hostyánszki A, Marini L, Potts SG, Smith HG, Al Hassan D, Albrecht M, Andersson GKS, Asís JD, Aviron S, Balzan MV, Baños-Picón L, Ignasi Bartomeus I, Batáry P, Burel F, Caballero-López B, Concepción ED, Coudrain V, Dänhardt J, Diaz M, Diekötter T, Dormann CF, Duflot R, Entling MH, Farwig N, Fischer C, Frank T, Garibaldi LA, Hermann J, Herzog F, Inclán D, Jacot K, Jauker F, Jeanneret P, Kaiser M, Krauss J, Le Féon V, Marshall J, Moonen A-C, Moreno G, Riedinger V, Rundlöf M, Rusch A, Scheper J, Schneider G, Schüepp C, Stutz S, Sutter L, Tamburini G, Thies C, Tormos J, Tscharntke T, Tschumi M, Uzman D, Wagner C, Zubair-Anjum M, Steffan-Dewenter I (2019) The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol Lett 22:1083–1094

    Article  PubMed  Google Scholar 

  • Maurer C, Bosco L, Klaus E, Cushman SA, Arlettaz R, Jacot A (2020) Habitat amount mediates the effect of fragmentation on a pollinator’s reproductive performance, but not on its foraging behaviour. Oecologia 193:523–534

    Article  PubMed  Google Scholar 

  • McElreath R (2016) Statistical Rethinking: a Bayesian course with examples in R and Stan. CRC Press, Taylor & Francis Group. Boca Raton FL, USA

    Google Scholar 

  • Melo GL, Sponchiado J, Cáceres NC, Fahrig L (2017) Testing the habitat amount hypothesis for South American small mammals. Biol Cons 209:304–314

    Article  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecol 31:1177–1194

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB, Devictor V, Corlett RT, Cumming GS, Loyola R, Maas B, Pejchar L (2019) How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biol Cons 232:271–273

    Article  Google Scholar 

  • Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, Wurst S, Rillig MC (2014) Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4:3514–3524

    Article  PubMed  PubMed Central  Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison ML, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DL, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HR, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JP, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. https://cran.r-project.org/package=vegan

  • Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376

    Article  Google Scholar 

  • Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD, Reynolds R, Edwards AS (1999) A landscape-scale of bumble bee foraging study range and constancy using harmonic radar. J Appl Ecol 36:519–533

    Article  Google Scholar 

  • Pebesma E (2018) Simple features for R: standardized support for spatial vector data. R J 10:439–446

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Petit DR (1989) Weather dependent use of habitat patches by wintering woodland birds. J Field Ornithol 60:241–247

    Google Scholar 

  • Pfeiffer V, Silbernagel J, Guédot C, Zalapa J (2019) Woodland and floral richness boost bumble bee density in cranberry resource pulse landscapes. Landscape Ecol 34:979–996

    Article  Google Scholar 

  • Pope SE, Fahrig L, Merriam HG (2000) Landscape complementation and metapopulation effects on leopard frog populations. Ecology 81:2498–2508

    Article  Google Scholar 

  • Potts JR, Hillen T, Lewis MA (2016) The “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions. Thyroid Res 9:233–247

    Google Scholar 

  • Püttker T, Crouzeilles R, Almeida-Gomes M, Schmoeller M, Maurenza D, Alves-Pinto H, Pardini R, Vieira MV, Banks-Leite C, Fonseca CR, Metzger JP, Accacio GM, Alexandrino ER, Barros CS, Bogoni JA, Boscolo D, Brancalion PHS, Bueno AA, Cambui ECB, Canale GR, Cerquiera R, Cesar RG, Colletta GD, Delciellos AC, Dixo M, Estavillo C, Esteves CF, Falcão F, Farah FT, Faria D, Ferraz KMPMB, Ferraz SFB, Ferreira PA, Graipel ME, Grelle CEV, Hernández MIM, Ivanauskas N, Laps RR, Leal IR, Lima MM, Lion MB, Magioli M, Magnago LFS, Manguiera JRAS, Marciano-Jr E, Mariano-Neto E, Marques MCM, Martins SV, Matos MA, Matos FAR, Miachir JI, Morante-Filho JM, Olifiers N, Oliveira-Santos LGR, Paciencia MLB, Paglia AP, Passamani M, Peres CA, Pinto Leite CM, Porto TJ, Querido LCA, Reis LC, Rezende AA, Rigueira DMG, Rocha PLB, Rocha-Santos L, Rodrigues RR, Santos RAS, Santos JS, Silveira MS, Simoneli M, Tabarelli M, Vasconcelos RN, Viana BF, Vieira EM, Prevedello JA (2020) Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol Cons 241:108368

  • Quinn JF, Harrison SP (1988) Effects of habitat fragmentation and isolation on species richness: evidence from biogeographic patterns. Oecologia 75:132–140

    Article  PubMed  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. https://www.r-project.org/

  • Redhead JW, Dreier S, Bourke AFG, Heard MS, Jordan WC, Sumner S, Wang J, Carvell C (2016) Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species. Ecol Appl 26:726–739

    Article  PubMed  Google Scholar 

  • Robinson GR, Quinn JF (1988) Extinction, turnover and species diversity in an experimentally fragmented California annual grassland. Oecologia 76:71–82

    Article  PubMed  Google Scholar 

  • Rodríguez-Loinaz G, Amezaga I, Onaindia M (2012) Does forest fragmentation affect the same way all growth-forms? J Environ Manage 94:125–131

    Article  PubMed  Google Scholar 

  • Rösch V, Tscharntke T, Scherber C, Batáry P (2015) Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia 179:209–222

    Article  PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Seibold S, Bässler C, Brandl R, Fahrig L, Förster B, Heurich M, Hothorn T, Scheipl F, Thorn S, Müller J (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 98:1613–1622

    Article  PubMed  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Siu JC, Koscinski D, Keyghobadi N (2016) Swallowtail butterflies show positive edge responses predicted by resource use. Landscape Ecol 31:2115–2131

    Article  Google Scholar 

  • Sonnier G, Jamoneau A, Decocq G (2014) Evidence for a direct negative effect of habitat fragmentation on forest herb functional diversity. Landscape Ecol 29:857–866

    Article  Google Scholar 

  • Soomers H, Karssenberg D, Verhoeven JTA, Verweij PA, Wassen MJ (2013) The effect of habitat fragmentation and abiotic factors on fen plant occurrence. Biodivers Conserv 22:405–424

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Verweij PA, Wassen MJ (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Swift TL, Hannon SJ (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol Rev 85:35–53

    Article  PubMed  Google Scholar 

  • Swihart RK, Gehring TM, Kolozsvary MB, Nupp TE (2003) Responses of “resistant” vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers Distrib 9:1–18

    Article  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • van Langevelde F (2015) Modelling the negative effects of landscape fragmentation on habitat selection. Eco Inform 30:271–276

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vieira MV, Almeida-Gomes M, Delciellos AC, Cerqueira R, Crouzeilles R (2018) Fair tests of the habitat amount hypothesis require appropriate metrics of patch isolation: an example with small mammals in the Brazilian Atlantic Forest. Biol Cons 226:264–270

    Article  Google Scholar 

  • Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Article  Google Scholar 

  • Virolainen KM, Suomi T, Suhonen J, Kuitunen M (1998) Conservation of vascular plants in single large and several small mires: species richness, rarity and taxonomic diversity. J Appl Ecol 35:700–707

    Article  Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae). J Insect Behav 13:239–246

    Article  Google Scholar 

  • Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Article  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, Lebuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419–427

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extension in ecology with R. Springer Science and Business Media LLC, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers of this manuscript for their helpful feedback. We thank Hailey Bloom, Jessy Bokvist, David Clake, Brenna Stanford, and Luke Storey for helping to carry out the field work in this study, and Parks Canada for their support in facilitating field sampling. Thanks to Hailey Bloom, Emma Dunlop, and Michael Gavin for assisting with species identification. We would also like to thank James Bull, Jori Harrison, and Brenna Stanford for their comments on previous versions of this manuscript.

Funding

This work was funded by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants to PG and SR, and an Alberta Conservation Association (ACA) Grant in Biodiversity to DC.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: All Authors; Methodology and formal analysis: DC and PG; Investigation, visualization and writing—original draft: DC; Resources, supervision, and writing—review and editing: PG and SR.

Corresponding author

Correspondence to Danielle J. Clake.

Ethics declarations

Conflict of interest

The authors have no conflict of interest or competing interests that are relevant to the content of this manuscript.

Ethical approval

Field work for this research was done with permission from Parks Canada (Research and Collection Permit No.: BAN-2015-18797 and BAN-2019-32979) and Alberta Tourism, Parks and Recreation (Research and Collection Permit No.: 17-150).

Consent to participate

Not applicable.

Consent for publication

All authors consent to the submission of this manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clake, D.J., Rogers, S.M. & Galpern, P. Landscape complementation is a driver of bumble bee (Bombus sp.) abundance in the Canadian Rocky Mountains. Landsc Ecol 37, 713–728 (2022). https://doi.org/10.1007/s10980-021-01389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01389-2

Keywords

Navigation