Skip to main content

Advertisement

Log in

Using animal movement behavior to categorize land cover and predict consequences for connectivity and patch residence times

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Landscape-scale population dynamics are driven in part by movement within and dispersal among habitat patches. Predicting these processes requires information about how movement behavior varies among land cover types.

Objectives

We investigated how butterfly movement in a heterogeneous landscape varies within and between habitat and matrix land cover types, and the implications of these differences for within-patch residence times and among-patch connectivity.

Methods

We empirically measured movement behavior in the Baltimore checkerspot butterfly (Euphydryas phaeton) in three land cover classes that broadly constitute habitat and two classes that constitute matrix. We also measured habitat preference at boundaries. We predicted patch residence times and interpatch dispersal using movement parameters estimated separately for each habitat and matrix land cover subclass (5 categories), or for combined habitat and combined matrix land cover classes (2 categories). We evaluated the effects of including edge behavior on all metrics.

Results

Overall, movement was slower within habitat land cover types, and faster in matrix cover types. Butterflies at forest edges were biased to remain in open areas, and connectivity and patch residence times were most affected by behavior at structural edges. Differences in movement between matrix subclasses had a greater effect on predictions about connectivity than differences between habitat subclasses. Differences in movement among habitat subclasses had a greater effect on residence times.

Conclusions

Our findings highlight the importance of careful classification of movement and land cover in heterogeneous landscapes, and reveal how subtle differences in behavioral responses to land cover can affect landscape-scale outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22(8):1117–1129

    Article  Google Scholar 

  • Barton KA, Phillips BL, Morales JM, Travis JMJ (2009) The evolution of an ‘intelligent’ dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos 118(2):309–319

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86(8):1988–1995

    Article  Google Scholar 

  • Bender DJ, Fahrig L (2005) Matrix structure obscures the relationship between interpatch movement and patch size and isolation. Ecology 86(4):1023–1033

    Article  Google Scholar 

  • Berwaerts K, Van Dyck H (2004) Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria. Oecologia 141(3):536–545

    Article  PubMed  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M (2012) Costs of dispersal. Biol Rev 87(2):290–312

    Article  PubMed  Google Scholar 

  • Bowers MD, Stamp NE, Collinge SK (1992) Early stage of host range expansion by a specialist herbivore, Euphydryas phaeton (Nymphalidae). Ecology 73(2):526–536

    Article  Google Scholar 

  • Breed GA, Stichter S, Crone EE (2013) Climate-driven changes in northeastern US butterfly communities. Nat Clim Change 3(2):142–145

    Article  Google Scholar 

  • Brown LM, Crone EE (2016a) Individual variation changes dispersal distance and area requirements of a checkerspot butterfly. Ecology 97(1):106–115

    Article  PubMed  Google Scholar 

  • Brown LM, Crone EE (2016b) Minimum area requirements for an at-risk butterfly based on movement and demography. Conserv Biol 30(1):103–112

    Article  PubMed  Google Scholar 

  • Brown LM, Breed GA, Severns PM, Crone EE (2016) Losing a battle but winning the war: moving past preference-performance to understand native herbivore-novel host plant interactions. Oecologia. doi:10.1007/s00442-016-3787-y

    PubMed Central  Google Scholar 

  • Cobbold CA, Lutscher F (2014) Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence. J Math Biol 68(3):549–579

    Article  PubMed  Google Scholar 

  • Crone EE (2013) Responses of social and solitary bees to pulsed floral resources. Am Nat 182(4):465–473

    Article  PubMed  Google Scholar 

  • Crone EE, Schultz CB (2003) Movement behavior and minimum patch size for butterfly population persistence. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. University of Chicago Press, Chicago, pp 561–576

    Google Scholar 

  • Delaware Division of Fish and Wildlife (2013) Wildlife species conservation and research program—Delaware’s endangered species. http://www.dnrec.delaware.gov/fw/NHESP/information/Pages/Endangered.aspx

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2):417–426

    Article  Google Scholar 

  • Dias MP, Granadeiro JP, Palmeirim JM (2009) Searching behaviour of foraging waders: does feeding success influence their walking? Anim Behav 77(5):1203–1209

    Article  Google Scholar 

  • Elderd BD, Nott MP (2008) Hydrology, habitat change and population demography: an individual-based model for the endangered Cape Sable seaside sparrow Ammodramus maritimus mirabilis. J Appl Ecol 45(1):258–268

    Article  Google Scholar 

  • ESRI (2015) ArcMap 10.3. Environmental Systems Resource Institute: Redlands

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2006) Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112(2):473–480

    Article  Google Scholar 

  • Fox J, Weisberg M (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  • Frye J, Durkin P, Gibbs D, Gibbs R, Lustig M (2013) Conservation and management of the Baltimore checkerspot (Euphydryas phaeton, Drury) in Maryland: strategies for statewide monitoring and for wetland resotration, captive breeding and release in the Piedmont region. In: Maryland Department of Natural Resources W. a. H. S., Natural Heritage Program (ed), 2 edn. Annapolis

  • Georgia department of natural resources (2016) Special concern animals in Georgia. http://georgiawildlife.com/sites/default/files/uploads/wildlife/nongame/text/html/et_lists/span.html

  • Graves T, Chandler RB, Royle JA, Beier P, Kendall KC (2014) Estimating landscape resistance to dispersal. Landscape Ecol 29(7):1201–1211

    Article  Google Scholar 

  • Haddad NM (1999) Corridor use predicted from behaviors at habitat boundaries. Am Nat 153(2):215–227

    Article  Google Scholar 

  • Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12(2):321–334

    Google Scholar 

  • Halstead BJ, McCoy ED, Stilson TA, Mushinsky HR (2007) Alternative foraging tactics of juvenile gopher tortoises (Gopherus polyphemus) examined using correlated random walk models. Herpetologica 63(4):472–481

    Article  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics—brief-history and conceptual domain. Biol J Linn Soc 42(1–2):3–16

    Article  Google Scholar 

  • Haynes KJ, Cronin JT (2004) Confounding of patch quality and matrix effects in herbivore movement studies. Landscape Ecol 19:119–124

    Article  Google Scholar 

  • Haynes KJ, Dillemuth FP, Anderson BJ, Hakes AS, Jackson HB, Jackson SE, Cronin JT (2007) Landscape context outweighs local habitat quality in its effects on herbivore dispersal and distribution. Oecologia 151(3):431–441

    Article  PubMed  Google Scholar 

  • Holl KD, Crone EE (2004) Applicability of landscape and island biogeography theory to restoration of riparian understorey plants. J Appl Ecol 41(5):922–933

    Article  Google Scholar 

  • Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 National land cover database for the counterminous United States—representing a decade of land cover change information. Photogramm Eng Remote Sens 81(5):345–354

    Google Scholar 

  • Hudgens BR, Morris WF, Haddad NM, Fields WR, Wilson JW, Kuefler D, Jobe T (2012) How complex do models need to be to predict dispersal of threatened species through matrix habitats? Ecol Appl 22(5):1701–1710

    Article  PubMed  Google Scholar 

  • Iowa department of natural resources (2012) The Iowa wildlife Action plan—chapter 3: species of greatest conservation need

  • Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348(6240):aaa2478-1

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23(8):879–890

    Google Scholar 

  • Kindvall O (1999) Dispersal in a metapopulation of the bush cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae). J Anim Ecol 68(1):172–185

    Article  Google Scholar 

  • Knowlton JL, Graham CH (2010) Using behavioral landscape ecology to predict species’ responses to land-use and climate change. Biol Conserv 143(6):1342–1354

    Article  Google Scholar 

  • Koen EL, Bowman J, Walpole AA (2012) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Resour 12:686–696

    Article  PubMed  Google Scholar 

  • Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91(4):944–950

    Article  PubMed  Google Scholar 

  • LeGrand J, Harry E., Ratcliffe JA, Finnegan JT, North Carolina Natural Heritage Program (2014) Natural Heritage Program List of the Rare Animal Species of North Carolina

  • Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11(3):131–135

    Article  CAS  PubMed  Google Scholar 

  • Maciel GA, Lutscher F (2013) How individual movement response to habitat edges affects population persistence and spatial spread. Am Nat 182:42–52

    Article  PubMed  Google Scholar 

  • MassGIS (2014) USGS color ortho imagery 2013/2014. http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/colororthos2013.html

  • Matter SF, Gargano C, Kim KI, Wick A (2016) Forest habitat reduces the flight of Pontia occidentalis (Reakirt) (Lepidoptera: Pieridae) relative to alpine meadow habitat. J Lepidopterists’ Soc 70(2):108–113

    Article  Google Scholar 

  • McClintock BT, King R, Thomas L, Matthiopoulos J, McConnell BJ, Morales JM (2012) A general discrete-time modeling framework for animal movement using multistate random walks. Ecol Monogr 82(3):335–349

    Article  Google Scholar 

  • McIntire EJB, Schultz CB, Crone EE (2007) Designing a network for butterfly habitat restoration: where individuals, populations and landscapes interact. J Appl Ecol 44(4):725–736

    Article  Google Scholar 

  • Merckx T, Van Dyck H (2005) Mate location behaviour of the butterfly Pararge aegeria in woodland and fragmented landscapes. Anim Behav 70(2):411–416

    Article  Google Scholar 

  • Morales JM, Ellner SP (2002) Scaling up animal movements in heterogeneous landscapes: the importance of behavior. Ecology 83(8):2240–2247

    Article  Google Scholar 

  • Morales JM, Haydon DT, Frair J, Holsiner KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–2445

    Article  Google Scholar 

  • Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, Merrill EH, Haydon DT (2010) Building the bridge between animal movement and population dynamics. Philosophical Trans R Soc B 365(1550):2289–2301

    Article  Google Scholar 

  • Neumann W, Martinuzzi S, Estes AB, Pidgeon AM, Dettki H, Ericsson G, Radeloff VC (2015) Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov Ecol 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowicki P, Vrabec V, Binzenhofer B, Feil J, Zaksek B, Hovestadt T, Settele J (2014) Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landscape Ecol 29(3):401–412

    Article  Google Scholar 

  • Ovaskainen O, Cornell SJ (2003) Biased movement at a boundary and conditional occupancy times for diffusion processes. J Appl Probab 40(3):557–580

    Article  Google Scholar 

  • Ovaskainen O, Rekola H, Meyke E, Arjas E (2008) Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 89(2):542–554

    Article  PubMed  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94

    Article  PubMed  Google Scholar 

  • Pennsylvania Natural Heritage Program (2016) PNHP species list—insects and spiders. http://www.naturalheritage.state.pa.us/species.aspx

  • Perry GLW, Bond NR (2009) Spatially explicit modeling of habitat dynamics and fish population persistence in an intermittent lowland stream. Ecol Appl 19(3):731–746

    Article  PubMed  Google Scholar 

  • Potts JR, Hillen T, Lewis MA (2016) The “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor Ecol 9:233–247

    Article  Google Scholar 

  • Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19(5):1205–1223

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Vienna

  • Reeve JD, Cronin JT, Haynes KJ (2008) Diffusion models for animals in complex landscapes: incorporating heterogeneity among substrates, individuals and edge behaviours. J Anim Ecol 77(5):898–904

    Article  PubMed  Google Scholar 

  • Revilla E, Wiegand T (2008) Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proc Natl Acad Sci USA 105(49):19120–19125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158(1):87–99

    Article  CAS  PubMed  Google Scholar 

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70(5):840–852

    Article  Google Scholar 

  • Ross JA, Matter SF, Roland J (2005) Edge avoidance and movement of the butterfly Parnassius smintheus in matrix and non-matrix habitat. Landscape Ecol 20:127–135

    Article  Google Scholar 

  • Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14(9):361–366

    Article  CAS  PubMed  Google Scholar 

  • Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Entomol 28(2):252–256

    Article  Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545

  • Schtickzelle N, Joiris A, Van Dyck H, Baguette M (2007) Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BMC Evol Biol 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz CB (1998) Dispersal behavior and its implications for reserve design in a rare Oregon butterfly. Conserv Biol 12(2):284–292

    Article  Google Scholar 

  • Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82(7):1879–1892

    Article  Google Scholar 

  • Schultz CB, Franco AMA, Crone EE (2012) Response of butterflies to structural and resource boundaries. J Anim Ecol 81(3):724–734

    Article  PubMed  Google Scholar 

  • Severns PM, McIntire EJB, Schultz CB (2013) Evaluating functional connectivity with matrix behavior uncertainty for an endangered butterfly. Landscape Ecol 28(3):559–569

    Article  Google Scholar 

  • Siu JC, Koscinski D, Keyghobadi N (2016) Swallowtail butterflies show positive edge responses predicted by resource use. Landscape Ecol. doi:10.1007/s10980-016-0385-7

    Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38(1–2):196–218

    Article  CAS  PubMed  Google Scholar 

  • Skórka P, Nowicki P, Lenda M, Witek M, Śliwińska EB, Settele J, Woyciechowski M (2013) Different flight behaviour of the endangered scarce large blue butterfly Phengaris teleius (Lepidoptera: Lycaenidae) within and outside its habitat patches. Landscape Ecol 28(3):533–546

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19(17):3576–3591

    Article  PubMed  Google Scholar 

  • Stevens VM, Polus E, Wesselingh RA, Schtickzelle N, Baguette M (2004) Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecol 19(8):829–842

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573

    Article  Google Scholar 

  • Tischendorf L (2001) Can landscape indices predict ecological processes consistently? Landscape Ecol 16(3):235–254

    Article  Google Scholar 

  • Turchin P (1991) Translating foraging movements in heterogeneous environments into the spatial-distribution of foragers. Ecology 72(4):1253–1266

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Turlure C, Van Dyck H, Schtickzelle N, Baguette M (2009) Resource-based habitat definition, niche overlap and conservation of two sympatric glacial relict butterflies. Oikos 118(6):950–960

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Springer-Verlag, New York

    Google Scholar 

  • Vanreusel W, Van Dyck H (2007) When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biol Conserv 135(2):202–211

    Article  Google Scholar 

  • White JW, Rassweiler A, Samhouri JF, Stier AC, White C (2014) Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123(4):385–388

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397

    Article  Google Scholar 

  • Wiens JA, Stenseth NC, Vanhorne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66(3):369–380

    Article  Google Scholar 

  • Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling. Northwestern University, Evanston

    Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27(6):777–797

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM (2016) Using step and path selection functions for estimating resistance to movement: pumas as a case study. Landscape Ecol 31(6):1319–1335

    Article  Google Scholar 

  • Zollner PA, Lima SL (1999) Search strategies for landscape-level interpatch movements. Ecology 80(3):1019–1030

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to many helpful assistants in the field, including M. Bogdziewicz, D. Donnelly, N. Kerr, C. B. Schultz, N. Tigreros, N. Warchola, G. Wardle, and R. Zwolak. We also thank J. Hepinstall-Cymerman for helpful conversations as this manuscript was being developed. This research was supported by a DoD SERDP (RC-2119) to E. E. Crone, a NSF PRFB (1402287) to L. M. Brown, NSF REU program funding through Tufts University (1005082 to Philip Starks and Colin Orians and 1560380 to Philip Starks) to H. Coffmann, A. Kazberouk and E. Kemper, and funding from the Belgian Fund for Scientific Research F.R.S.FNRS to N. Schtickzelle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leone M. Brown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, L.M., Fuda, R.K., Schtickzelle, N. et al. Using animal movement behavior to categorize land cover and predict consequences for connectivity and patch residence times. Landscape Ecol 32, 1657–1670 (2017). https://doi.org/10.1007/s10980-017-0533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0533-8

Keywords

Navigation