Skip to main content
Log in

Mechanical properties of intact single fibres from wild-type and MLC/mIgf-1 transgenic mouse muscle

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The effects of overexpression of the local form of insulin like growth factor-1 (mIgf-1) on skeletal muscle were investigated by comparing the mechanical properties of single intact fibres from the flexor digitorum brevis of wild-type (WT) and (MLC/mIgf-1) transgenic mice (TG) at 21–24°C. Isolated single fibres were clean enough to measure accurately the sarcomere length. The parameters investigated were: tetanic absolute and specific force, the force–velocity relationship, and the sarcomere length–tension relationship. In addition, we investigated the properties of the “static stiffness”, a non-crossbridge Ca2+-dependent increase of fibre stiffness previously found in frog muscle. Both average cross-sectional area and tetanic force almost doubled in TG fibres, so that specific force was the same in both preparation: 312 ± 20 and 344 ± 34 kN m−2 in WT and TG fibres, respectively. None of the relative force–velocity parameters was altered by Igf-1 overexpression, however, V max (8–10 l 0 s−1) was greater than previously reported in whole muscles. The sarcomere length–tension relationship was the same in TG and WT fibres showing the classical shape with a plateau region between 2.28 and 2.52 μm and a linear descending limb. The static stiffness was present in both WT and TG fibres and showed similar characteristics to that of frog skeletal muscle. In contrast to the other parameters, static stiffness in TG fibres was about 24% smaller than in WT fibres suggesting a possible effect of Igf-1 overexpression on its mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asmussen G, Maréchal G (1989) Maximal shortening velocities, isomyosins and fibre types in soleus muscle of mice, rats and guinea-pigs. J Physiol 416:245–254

    CAS  PubMed  Google Scholar 

  • Bagni MA, Cecchi G, Colomo F (1985) A laser diffractometer for fast sarcomere length measurements in frog single muscle fibres. J Muscle Res Cell Motil 6:102

    Google Scholar 

  • Bagni MA, Cecchi G, Colomo F, Tesi C (1988) Plateau and descending limb of the sarcomere length–tension relation in short length-clamped segments of frog muscle fibres. J Physiol 401:581–595

    CAS  PubMed  Google Scholar 

  • Bagni MA, Cecchi G, Colomo F, Garzella P (1994) Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres. J Physiol 481(2):273–278

    CAS  PubMed  Google Scholar 

  • Bagni MA, Cecchi G, Colombini B, Colomo F (2002) A non cross-bridge stiffness in activated frog muscle fibres. Biophys J 82:3118–3127

    Article  CAS  PubMed  Google Scholar 

  • Bagni MA, Colombini B, Geiger P, Berlinguer Palmini R, Cecchi G (2004) Non cross-bridge calcium dependent stiffness in frog muscle fibres. Am J Physiol Cell Physiol 286:C1353–C1357

    Article  CAS  PubMed  Google Scholar 

  • Bang ML, Li X, Littlefield S, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916

    Article  CAS  PubMed  Google Scholar 

  • Barton ER, Morris L, Musarò A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–147

    Article  CAS  PubMed  Google Scholar 

  • Barton-Davis ER, Shoturma DI, Musarò A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of IGF-1 blocks the aging related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–15607

    Article  CAS  PubMed  Google Scholar 

  • Baylor SM, Hollingworth S (2003) Sarcoplasmatic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551:125–138

    Article  CAS  PubMed  Google Scholar 

  • Burkholder TJ, Lieber RL (2001) Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol 204:1529–1536

    CAS  PubMed  Google Scholar 

  • Cecchi G, Colomo F, Lombardi V (1978) Force–velocity relation in normal and nitrate treated frog single muscle fibres during rise of tension in an isometric tetanus. J Physiol 285:257–273

    CAS  PubMed  Google Scholar 

  • Del Prete Z, Musarò A, Rizzuto E (2008) Measuring mechanical properties, including isotonic fatigue, of Fast and Slow MLC/mIgf-1 transgenic skeletal muscle. Ann Biomed Eng 36:1281–1290

    Article  PubMed  Google Scholar 

  • Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, Molinaro M, Rosenthal N, Musarò A (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168:193–199

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolny G, Aucello M, Molinaro M, Musarò A (2008) Local expression of mIgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model. Neurol Res 30:131–136

    Article  CAS  PubMed  Google Scholar 

  • Edman KAP (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291:143–159

    CAS  PubMed  Google Scholar 

  • Edman KAP (2005) Contractile properties of mouse single muscle fibres, a comparison with amphibian muscle fibres. J Exp Biol 208:1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Edman K, Reggiani C (1987) The sarcomere length–tension relation determined in short segments of intact muscle fibres of the frog. J Physiol 385:709–732

    CAS  PubMed  Google Scholar 

  • Elmubarak MH, Ranatunga KW (1984) Temperature sensitivity of tension development in a fast-twitch muscle of the rat. Muscle Nerve 7:298–303

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez E, Messi ML, Delbono O (2000) The specific force of single intact Extensor Digitorum Longus and Soleus mouse muscle fibres declines with aging. J Membr Biol 178:175–183

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez E, Messi ML, Zheng Z, Delbono O (2003) Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice. J Physiol 552(3):833–844

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc London Ser B 126:136–195

    Article  Google Scholar 

  • Labeit D, Watanabe K, Wit C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA 100:13716–13721

    Article  CAS  PubMed  Google Scholar 

  • Lannergren J, Westerblad H (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J Physiol 390:285–293

    CAS  PubMed  Google Scholar 

  • Musarò A, Rosenthal N (2006) The critical role of Insulin-like growth factor-1 isoforms in the physiopathology of skeletal muscle. Curr Genomics 3:19–32

    Article  Google Scholar 

  • Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeny L, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  PubMed  Google Scholar 

  • Neagoe C, Opitz CA, Makarenko I, Linke WA (2003) Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J Muscle Res Cell Motil 24:175–189

    Article  CAS  PubMed  Google Scholar 

  • Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  CAS  PubMed  Google Scholar 

  • Ranatunga KW (1984) The force–velocity relation of rat fast- and slow-twitch muscles examined at different temperatures. J Physiol 351:517–529

    CAS  PubMed  Google Scholar 

  • Ranatunga KW, Thomas PE (1990) Correlation between shortening velocity, force–velocity and histochemical fibre-type composition in rat muscles. J Muscle Res Cell Motil 11:240–250

    Article  CAS  PubMed  Google Scholar 

  • Roots H, Offer GW, Ranatunga KW (2007) Comparison of tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions. J Muscle Res Cell Motil 28:123–139

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Bruton JD, Lannergren J (1997) The effect of intracellular pH on contractile function on intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 500(1):193–204

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from: Università di Firenze, Ministero della Ricerca Scientifica (PRIN 2007 ABK385), Ente Cassa di Risparmio di Firenze, Telethon and Fondazione Cassa di Risparmio di Pistoia e Pescia (2008.0253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cecchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombini, B., Benelli, G., Nocella, M. et al. Mechanical properties of intact single fibres from wild-type and MLC/mIgf-1 transgenic mouse muscle. J Muscle Res Cell Motil 30, 199–207 (2009). https://doi.org/10.1007/s10974-009-9187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9187-8

Keywords

Navigation