Skip to main content
Log in

A parametric study of spectral radiation of gas-fuel combustion media in 1-D furnace cases for energy utilization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper studies the spectral radiation characteristics of gas-fuel combustion media through numerical calculation from the perspective of radiative energy utilization. Based on accurate band model for gas radiation and the radiation transfer equation, one-dimensional cases representing flame temperature field are constructed to investigate the effects of different flame media parameters on the spectral radiative energy proportion and total radiative heat flux, including the temperature, total pressure, partial pressure, path-length, and molar ratio. The interactions between the parameters are also analyzed. The radiation energy quality is also properly analyzed based on the equivalent temperature theory. It is found that temperature is the dominant influencing factor. At an average temperature of 1600 K, the proportion of spectral radiation in the waveband of 0–3 μm accounts for 55%. Increases in the total pressure, partial pressure, and molar ratio enhance the total radiative energy and short-wavelength radiation proportion. The total pressure and partial pressure have similar effects, but the molar ratio has a less effect, especially under high-pressure conditions. The equivalent temperature method can be used to compare the quality of radiative energy more conveniently. Increasing temperature is the most important factor in improving energy quality. This study provides a reference for spectral radiative energy management and future research on photo and thermal energy cascade utilization based on fuel combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo S, Liu Q, Sun J, Jin H. A review on the utilization of hybrid renewable energy. Renew Sust Energ Rev. 2018;91:1121–47.

    Google Scholar 

  2. Mu C, Ding T, Qu M, Zhou Q, Li F, Shahidehpour M. Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization. Appl Energy. 2020;280(15):115989.

    Google Scholar 

  3. Teng J, Wang W, Mu X. A novel economic analyzing method for CCHP systems based on energy cascade utilization. Energy. 2020;207:118227.

    Google Scholar 

  4. Shan S, Zhou Z, Cen K. An innovative integrated system concept between oxy-fuel thermo-photovoltaic device and a brayton-rankine combined cycle and its preliminary thermodynamic analysis. Energy Conv Manag. 2019;180:1139–52.

    CAS  Google Scholar 

  5. Shan S, Zhou Z, Wang Z, Cen K. A novel flame energy grading conversion system: preliminary experiment and thermodynamic parametric analysis. Int J Energy Res. 2020;44(3):2084–99.

    Google Scholar 

  6. Howell JR, Menguc MP, Siegel R. Thermal radiation heat transfer. 6th ed. Boca Raton: CRC Press; 2015.

    Google Scholar 

  7. Shan S, Zhou Z, Wang Z, Cen K. Radiative energy flux characteristics and model analysis for one-dimensional fixed-bed oxy-coal combustion. J Zhejiang Univ-SCI A. 2019;20(6):431–46.

    CAS  Google Scholar 

  8. Fernandes MR, Schaefer LA. Multiparticle nanofluid optimization for spectral-splitting energy harvesting. Renew Energy. 2021;173(11):849–60.

    CAS  Google Scholar 

  9. Shan S, Zhou Z, Wang Z, Cen K. New oxy-fuel cascade thermo-photovoltaic energy conversion system: Effect of cascade design and oxygen ratio. Energy Conv Manag. 2019;196:1208–21.

    CAS  Google Scholar 

  10. Qu W, Hong H, Jin H. A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel. Appl Energy. 2019;248:162–73.

    CAS  Google Scholar 

  11. Lou C, Li WH, Zhou HC, Salinas CS. Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis. Int J Heat Mass Transf. 2011;54(1–3):1–8.

    CAS  Google Scholar 

  12. Kez V, Consalvi JL, Liu F, Gronarz T, Stroehle J, Kneer R, Epple B. Investigation of gas and particle radiation modelling in wet oxy-coal combustion atmospheres. Int J Heat Mass Transf. 2019;133:1026–40.

    CAS  Google Scholar 

  13. Vosough A. Thermodynamic parametric study of a supercritical powerplant. J Thermophys Heat Transf. 2015;26(4):629–37.

    Google Scholar 

  14. Yan B, Xue S, Li Y, Duan J, Zeng M. Gas-fired combined cooling, heating and power (CCHP) in Beijing: a techno-economic analysis. Renew Sust Energ Rev. 2016;63:118–31.

    Google Scholar 

  15. Dorigon LJ, Duciak G, Brittes R, Cassol F, Galarca M, Franca FHR. WSGG correlations based on hitemp2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. Int J Heat Mass Transf. 2013;64:863–73.

    CAS  Google Scholar 

  16. Taghavifar H. Combined convection–radiation heat transfer from n-octane combusted gas passing through different geometrical ducts. J Therm Anal Calorim. 2021;143:3233–44.

    CAS  Google Scholar 

  17. Liu Y, Liu K, Liu G. Radiative heat transfer calculation of oxy-fuel flames using the multi-group full-spectrum K-distribution method. Appl Therm Eng. 2020;185(2):116344.

    Google Scholar 

  18. Rothman LS, Gordon IE, Barber RJ, Dothe H, Gamache RR, Goldman A, Perevalov VI, Tashkun SA, Tennyson J. HITEMP, the high-temperature molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2010;111(15):2139–50.

    CAS  Google Scholar 

  19. Arnold JO, Whiting EE, Lyle GC. Line by line calculation of spectra from diatomic molecules and atoms assuming a voigt line profile. J Quant Spectrosc Radiat Transf. 1994;9(6):775–98.

    Google Scholar 

  20. Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2. Int J Heat Mass Transf. 1997;40(4):987–91.

    CAS  Google Scholar 

  21. Johansson R, Leckner B, Andersson K, Johnsson F. Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combust Flame. 2011;158(5):893–901.

    CAS  Google Scholar 

  22. Cai J, Modest MF. Improved full-spectrum k-distribution implementation for inhomogeneous media using a narrow-band database. J Quant Spectrosc Radiat Transf. 2014;141:65–72.

    CAS  Google Scholar 

  23. Webb BW, Ma J, Pearson JT, Solovjov VP. SLW modeling of radiation transfer in comprehensive combustion predictions. Combust Sci Technol. 2018;190(7–9):1392–408.

    CAS  Google Scholar 

  24. Bordbar H, Coelho FR, Fraga GC, França FHR, Hostikka S. Pressure-dependent weighted-sum-of-gray-gases models for heterogeneous CO2-H2O mixtures at sub- and super-atmospheric pressure. Int J Heat Mass Transf. 2021;173:121207.

    CAS  Google Scholar 

  25. Cassol F, Brittes R, França FHR, Ezekoye OA. Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot. Int J Heat Mass Transf. 2014;79:796–806.

    CAS  Google Scholar 

  26. Ates C, Ozen G, Selcuk N, Kulah G. Assessment of gas radiative property models in the presence of nongray particles. Numer Heat Tranf A-Appl. 2018;73(6):385–407.

    CAS  Google Scholar 

  27. Centeno FR, Brittes R, Rodrigues LGP, Coelho FR, Franca FHR. Evaluation of the WSGG model against line-by-line calculation of thermal radiation in a non-gray sooting medium representing an axisymmetric laminar jet flame. Int J Heat Mass Transf. 2018;124:475–83.

    CAS  Google Scholar 

  28. Fernandez SF, Paul C, Sircar A, Imren A, Haworth DC, Roy S, Modest MF. Soot and spectral radiation modeling for high-pressure turbulent spray flames. Combust Flame. 2018;190:402–15.

    CAS  Google Scholar 

  29. Chu H, Consalvi JL, Gu M, Liu F. Calculations of radiative heat transfer in an axisymmetric jet diffusion flame at elevated pressures using different gas radiation models. J Quant Spectrosc Radiat Transf. 2017;197:12–25.

    CAS  Google Scholar 

  30. Rodrigues LGP, Machado IM, Ziemniczak A, Pereira FM, Pagot PR, Franca FHR. Comparisons between numerical simulations and experimental measurements of radiative heat flux for a series of CH4/N2 diluted laminar non-premixed flames. Combust Sci Technol. 2019;193(1):1–22.

    Google Scholar 

  31. Razmjooei B, Ravangard AR, Momayez L, Ferchichi M. The influence of heat transfer due to radiation heat transfer from a combustion chamber. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10263-3.

    Article  Google Scholar 

  32. Zheng S, Yang Y, Sui R, Lu Q. Effects of C2H2 and C2H4 radiation on soot formation in ethylene/air diffusion flames. Appl Therm Eng. 2021;183(1):116194.

    CAS  Google Scholar 

  33. Shan S, Zhou Z, Chen L, Wang Z, Cen K. New weighted-sum-of-gray-gases model for typical pressurized oxy-fuel conditions. Int J Energy Res. 2017;41(15):2576–95.

    CAS  Google Scholar 

  34. Shan S, Qian B, Zhou Z, Wang Z, Cen K. New pressurized WSGG model and the effect of pressure on the radiation heat transfer of H2O/CO2 gas mixtures. Int J Heat Mass Transf. 2018;121:999–1010.

    CAS  Google Scholar 

  35. Andersson K, Johnsson F. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel. 2007;86(5/6):656–68.

    CAS  Google Scholar 

  36. Andersson K, Johansson R, Johnsson F, Leckner B. Radiation intensity of propane-fired oxy-fuel flames: implications for soot formation. Energy Fuels. 2008;22(3):1535–41.

    CAS  Google Scholar 

  37. Johansson R, Leckner B, Andersson K. Influence of particle and gas radiation in oxy-fuel combustion. Int J Heat Mass Transf. 2013;65:143–52.

    CAS  Google Scholar 

  38. Goutiere V, Liu F, Charette A. An assessment of real-gas modelling in 2D enclosures. J Quant Spectrosc Radiat Transf. 2000;64(3):299–326.

    CAS  Google Scholar 

  39. Chu H, Liu F, Zhou H. Calculations of gas thermal radiation transfer in one-dimensional planar enclosure using LBL and SNB models. Int Int J Heat Mass Transf. 2011;54(21):4736–45.

    CAS  Google Scholar 

  40. Chu H, Gu M, Consalvi JL, Liu F, Zhou H. Effects of total pressure on non-grey gas radiation transfer in oxy-fuel combustion using the LBL, SNB, SNBCK, WSGG, and FSCK methods. J Quant Spectrosc Radiat Transf. 2016;172:24–35.

    CAS  Google Scholar 

  41. Bauer T. Thermophotovoltaics: basic principles and critical aspects of system design. Berlin: Springer; 2011.

    Google Scholar 

  42. Ferrari C, Melino F, Pinelli M, Spina PR. Thermophotovoltaic energy conversion: analytical aspects, prototypes and experiences. Appl Energy. 2014;113:1717–30.

    Google Scholar 

  43. Zhou Z, Shan S, Chen L, Zhang Y. Exergy of blackbody radiation and monochromatic photon. Int J Thermophys. 2017;38(4):57.

    Google Scholar 

  44. Shan S, Zhou Z. Second law analysis of spectral radiative transfer and calculation in one-dimensional furnace cases. Entropy. 2019;21(5):461.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Postdoctoral Program for Innovative Talents of China (BX2021254) and National Natural Science Foundation of China (52106178)

Author information

Authors and Affiliations

Authors

Contributions

Shiquan Shan contributed to conceptualization, methodology, investigation, writing–original draft, and funding acquisition. Binghong Chen contributed to supervision, validation, data curation, and writing review and editing.

Corresponding author

Correspondence to Binghong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Chen, B. A parametric study of spectral radiation of gas-fuel combustion media in 1-D furnace cases for energy utilization. J Therm Anal Calorim 147, 8855–8867 (2022). https://doi.org/10.1007/s10973-021-11149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11149-8

Keywords

Navigation