Skip to main content
Log in

Phenomenological characterization and thermal analysis of flame spread over jet fuel: influence of radiant exposure time

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The high-temperature objects widely exist in industrial and civil building such as the nearby burning pool fires, the heated walls and the hot smoke layer accumulated on ceilings. The output of radiant energy from the adjacent high-temperature objects may accelerate the flame spread. In this paper, a set of well-designed laboratory-scale experiments are carried out to reveal the combustion behavior and flame spread over jet fuel of RP-3 with different radiant heat fluxes and radiant exposure times. Several characteristic parameters, namely flame height, flame spread rate, fuel surface temperature and velocity of subsurface flow, are quantified and analyzed to describe the flame spread behaviors. The average flame height is augmented by the time-integrated radiant heat flux due to the accumulative heat flux and the expanded combustion area. Similarly, measurements of flame spread rate and liquid fuel temperature identify that they are sensitive to the applied radiant flux, but this sensitivity decreases as the flame volume and the blockage effect increase. The external radiant heat flux can simultaneously influence the flame spread from both gas and liquid phases. The thermal exchange and fluid motion involving flame spread under varied external radiant conditions are revealed. The theoretical formula between the fuel surface temperature and the time-integrated radiant heat flux is established based upon the energy conservation law and the thermal boundary layer theory. The current results possess the practical guiding importance for the development of liquid spilling fire disposal measures under the radiations of external heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nakamura Y, Yamashita H, Takeno T, Kushida G. Effects of gravity and ambient oxygen on a gas-phase ignition over a heated solid fuel. Combust Flame. 2000;120(1):34–48. https://doi.org/10.1016/S0010-2180(99)00077-2.

    Article  CAS  Google Scholar 

  2. Saito K, Williams FA, Wichman IS, Quintiere JG. Upward turbulent flame spread on wood under external radiation. J Heat Transf. 1989;111(2):438–45. https://doi.org/10.1115/1.3250696.

    Article  Google Scholar 

  3. Brehob EG, Kulkarni AK. Experimental measurements of upward flame spread on a vertical wall with external radiation. Fire Saf J. 1998;31(3):181–200. https://doi.org/10.1016/S0379-7112(98)00012-5.

    Article  Google Scholar 

  4. Osorio A, Pello AF, Urban D, Ruff G, editors. External radiant flux and oxygen concentration as conditions for concurrent flame spread in fabrics. In: International conference on environmental systems; 2013 July 15–19, 2012; San Diego, California.

  5. Fernandez-Pello AC. Upward laminar flame spread under the influence of externally applied thermal radiation. Combust Sci Technol. 1977;17(3–4):87–98. https://doi.org/10.1080/00102207708946818.

    Article  CAS  Google Scholar 

  6. Quintiere J. A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus. Fire Mater. 1981;5(2):52–60. https://doi.org/10.1002/fam.810050204.

    Article  Google Scholar 

  7. Wang Q, Xiao H, Wan W, Cui Z, Zhu H, Sun J. Flame spread on inclined wood surfaces: influence of external heat flux and ambient oxygen concentration. Combust Sci Technol. 2018;190(1):97–113. https://doi.org/10.1080/00102202.2017.1376665.

    Article  CAS  Google Scholar 

  8. Chen X, Kong W, Wang B. Effect of external heat flux on combustion behaviors of porous beds soaked with liquid fuels. J Eng Thermophys. 2007;28(5):871–4. https://doi.org/10.3321/j.issn:0253-231X.2007.05.047.

    Article  CAS  Google Scholar 

  9. Farahani HF, Fu Y, Jomaas G, Rangwala AS. Convection-driven cavity formation in ice adjacent to externally heated flammable and non-flammable liquids. Cold Reg Sci Technol. 2018;154:54–62. https://doi.org/10.1016/j.coldregions.2018.06.010.

    Article  Google Scholar 

  10. Degroote E. Control parameters of flame spreading in a fuel container. J Therm Anal Calorim. 2007;87(1):149–51. https://doi.org/10.1007/s10973-006-7838-1.

    Article  CAS  Google Scholar 

  11. Williams FA. Mechanisms of fire spread. Proc Combust Inst. 1977;16(1):1281–94. https://doi.org/10.1016/s0082-0784(77)80415-3.

    Article  Google Scholar 

  12. Ito A, Masuda D, Saito K. A study of flame spread over alcohols using holographic interferometry. Combust Flame. 1991;83(3–4):375–89. https://doi.org/10.1016/0010-2180(91)90084-o.

    Article  CAS  Google Scholar 

  13. Takahashi K, Ito A, Kudo Y, Konishi T, Saito K. Scaling analysis on pulsating flame spread over liquids. Int J Chem Eng. 2008; Article ID 178292:1–10. https://doi.org/10.1155/2008/178292.

  14. Degroote E, Garcia-Ybarra PL. Flame spreading over liquid ethanol. Eur Phys J B. 2000;13(2):381–6. https://doi.org/10.1007/s100510050045.

    Article  CAS  Google Scholar 

  15. Li M, Fukumoto K, Wang C, Zhang X, Yang S, Liu X. Phenomenological characterization and investigation of the mechanism of flame spread over butanol-diesel blended fuel. Fuel. 2018;233:21–8. https://doi.org/10.1016/j.fuel.2018.06.033.

    Article  CAS  Google Scholar 

  16. Zhang XL, Vantelon JP, Joulain P. Thermal radiation from a small-scale pool fire: influence of externally applied radiation. Combust Flame. 1993;92(1):71–84. https://doi.org/10.1016/0010-2180(93)90199-d.

    Article  CAS  Google Scholar 

  17. Hurley MJ, Gottuk D, Hall JR Jr, Harada K, Kuligowski E, Milosh Puchovsky PE, et al. SFPE handbook of fire protection engineering. 5th ed. Berlin: Springer; 2016.

    Book  Google Scholar 

  18. Adityo R, Agung R, Satrio P, Nugroho YS. Measurement of thermal radiative heat transfer using a multi-axis heat flux sensor. In: 2nd international Tropical Renewable Energy Conference (I-TREC); 2018/01: IOP Publishing; 2018. p. 012106.

  19. Chen X, Lu S, Ding Z. Initial fuel depth effect on the burning characteristics of thin-layer pool fire in a confined enclosure. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08493-1.

    Article  Google Scholar 

  20. An W, Sun J, Zhu G. Experimental study on temperature field of upward flame spread over discrete polystyrene foam. J Therm Anal Calorim. 2018;131(3):2647–56. https://doi.org/10.1007/s10973-017-6728-z.

    Article  CAS  Google Scholar 

  21. Fang J, Tu R, Guan J, Wang J, Zhang Y. Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel. 2011;90(8):2760–6. https://doi.org/10.1016/j.fuel.2011.03.035.

    Article  CAS  Google Scholar 

  22. Tang F, He Q, Wen J. Effects of crosswind and burner aspect ratio on flame characteristics and flame base drag length of diffusion flames. Combust Flame. 2019;200:265–75. https://doi.org/10.1016/j.combustflame.2018.11.011.

    Article  CAS  Google Scholar 

  23. Hasemi Y, Nishihata M. Fuel shape effect on the deterministic properties of turbulent diffusion flames. In: Fire Safety Science International Association for Fire Safety Science; 1988. p. 275–84.

  24. Ross HD. Ignition of and flame spread over laboratory-scale pools of pure liquid fuels. Prog Energ Combust. 1994;20(1):17–63. https://doi.org/10.1016/0360-1285(94)90005-1.

    Article  Google Scholar 

  25. Zhang XL, Vantelon JP, Joulain P, Fernandez-Pello AC. Influence of an external radiant flux on a 15-cm-diameter kerosene pool fire. Combust Flame. 1991;86(3):237–48. https://doi.org/10.1016/0010-2180(91)90104-J.

    Article  CAS  Google Scholar 

  26. Kashiwagi T. A study of flame spread over a porous material under external radiation fluxes. Symp Int Combust. 1975;15(1):255–65. https://doi.org/10.1016/S0082-0784(75)80302-X.

    Article  CAS  Google Scholar 

  27. Chen M, Dongxu O, Cao S, Liu J, Wang Z, Wang J. Effects of heat treatment and SOC on fire behaviors of lithium-ion batteries pack. J Therm Anal Calorim. 2019;136(6):2429–37. https://doi.org/10.1007/s10973-018-7864-9.

    Article  CAS  Google Scholar 

  28. Guo J, Lu S, Wang C. Study on the subsurface flow induced by flame spread over aviation kerosene. J Therm Anal Calorim. 2014;116(1):455–60. https://doi.org/10.1007/s10973-013-3547-8.

    Article  CAS  Google Scholar 

  29. Zhou Y, Yang L, Dai J, Wang Y, Deng Z. Radiation attenuation characteristics of pyrolysis volatiles of solid fuels and their effect for radiant ignition model. Combust Flame. 2010;157(1):167–75. https://doi.org/10.1016/j.combustflame.2009.06.020.

    Article  CAS  Google Scholar 

  30. Shih TM. Fire characteristics under the influence of external radiation. In: Joint ASME/AIChE 28th National Heat Transfer Conference; August 6–8, 1979; San Diego, CA.

  31. Hirano T, Sato K. Effects of radiation and convection on gas velocity and temperature profiles of flames spreading over paper. Symp Int Combust. 1975;15(1):233–41. https://doi.org/10.1016/S0082-0784(75)80300-6.

    Article  CAS  Google Scholar 

  32. Zhang XL, Vantelon JP, editors. Radiative transfer at the surface of a small scale pool fire under the influence of external radiation. Heat transfer in radiating and combusting systems. Berlin: Springer; 1991.

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 51806054), China Postdoctoral Science Foundation (No. 2018T110614), and Fundamental Research Funds for the Central Universities (Grant No. JZ2018HGTB0260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manhou Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, C., Sun, L. et al. Phenomenological characterization and thermal analysis of flame spread over jet fuel: influence of radiant exposure time. J Therm Anal Calorim 144, 835–845 (2021). https://doi.org/10.1007/s10973-020-09552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09552-8

Keywords

Navigation