Skip to main content
Log in

Thermal analysis study of solid dispersions hydrochlorothiazide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid dispersions (SD) are used as a technological strategy to increase the aqueous dissolution rate of poorly soluble active pharmaceutical ingredients, such as hydrochlorothiazide (HCTZ), an antihypertensive used frequently in medical clinics. The aim of this study was to characterize solid dispersions of HCTZ obtained with different processing adjuvants, using the DSC, TG, XRPD, FTIR and SEM techniques, and to evaluate the influence of carriers used in biopharmaceutical performance by analyzing dissolution efficiency. The SDs were obtained using the solvent method, and spray drying was used as the drying technique. The carriers used PEG 1500, sodium lauryl sulfate and PVP K30. The calorimetric analysis and XRPD showed amorphous behavior to SDs that used hydrophilic polymer as a carrier, and thermogravimetric analysis showed maintaining thermal stability of the HCTZ for most dispersions. FTIR detected intermolecular interactions of hydrogen bonds, while SEM showed the formation of microparticles with a tendency to sphericity. Acquired morphology associated with amorphization contributed to the increase in dissolution efficiency of dispersions, being that this SD (HCTZ/PVP K30) showed the best increase in dissolution. We therefore concluded that the analytical techniques used were of fundamental importance to the characterization of pharmaceutical products developed as to their physicochemical properties and the prescience of the oral bioavailability of HCTZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alves LDS, Lyra MAM, Rolim LA, Presmich GMA, Rolim-Neto PJ. Avanços, propriedades e aplicações de dispersões sólidas no desenvolvimento de formas farmacêuticas sólidas. Rev Ciênc Farm Básica Apl. 2012;33:17–25.

    CAS  Google Scholar 

  2. Truong DH, Tran TH, Ramasamy T, Choi JY, Choi H-G, Yong CS, Kim JO. Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. Powder Technol. 2015;283:260–5.

    Article  CAS  Google Scholar 

  3. Bikiaris D, Papageorgiou GZ, Stergiou A, Pavlidou E, Karavas E, Kanaze F, Georgarakis M. Physicochemical studies on solid dispersions of poorly water-soluble drugs evaluation of capabilities and limitations of thermal analysis techniques. Thermochim Acta. 2005;439:58–67.

    Article  CAS  Google Scholar 

  4. Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85:799–813.

    Article  CAS  Google Scholar 

  5. Veronez IP, Daniel JSP, Júnior CEC, Garcia JS, Trevisan MG. Development, characterization, and stability studies of ethinyl estradiol solid dispersion. J Therm Anal Calorim. 2015;120:573–81.

    Article  CAS  Google Scholar 

  6. Janssens S, de Armas HN, D’Autry W, Van Schepdael A, Van den Mooter G. Characterization of ternary solid dispersions of Itraconazole in polyethylene glycol 6000/polyvidone-vinylacetate 64 blends. Eur J Pharm Biopharm. 2008;69:1114–20.

    Article  CAS  Google Scholar 

  7. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. Int Sch Res Netw. 2012;. doi:10.5402/2012/195727.

    Google Scholar 

  8. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvente evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  CAS  Google Scholar 

  9. Mogal SA, Gurjar PN, Yamgar DS, Kamod AC. Solid dispersion technique for improving solubility of some poorly soluble drugs. Der Pharm Lett. 2012;4:1574–86.

    CAS  Google Scholar 

  10. Kaur P, Singh SK, Garg V, Gulati M, Vaidya Y. Optimization of spray drying process for formulation of solid dispersion containing polypeptide-k powder through quality by design approach. Powder Technol. 2015;284:1–11.

    Article  CAS  Google Scholar 

  11. Chauhan B, Shimpi S, Paradkar A. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique. AAPS Pharm Sci Tech. 2005;6:E405–12.

    Article  Google Scholar 

  12. British pharmacopoeia. The stationary office: pharmacopeia Commission British. Pharmabooks Publisher. 2015; ISBN 10 0113229879.

  13. Brunton LL, Chabner BA, Knollmann BC. Goodman and Gilman: as bases Farmacológicas da Terapêutica. 12th ed. Rio de Janeiro: McGraw-Hill; 2012.

    Google Scholar 

  14. Corveleyn S, Remon JP. Bioavailability of hydrochlorothiazide: conventional versus freeze-dried tablets. Int J Pharm. 1998;173:149–55.

    Article  CAS  Google Scholar 

  15. Chadha R, Bhandari S, Khullar S, Mandal SK, Jain DV. Characterization and evaluation of multi-component crystals of hydrochlorothiazide. Pharm Res. 2014;31:2479–89.

    Article  CAS  Google Scholar 

  16. El-Gizawy SA, Osman MA, Arafa MF, El Maghraby GM. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm. 2015;478:773–8.

    Article  CAS  Google Scholar 

  17. Khan A, Iqbal Z, Shah Y, Ahmad L, Ullah Z, Ullah A. Enhancement of dissolution rate of class II drugs (hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques. Saudi Pharm J. 2015;23:650–7.

    Article  Google Scholar 

  18. Fengming L. Candesartan hydrochlorothiazide dispersible tablets and the preparing method thereof. CN101062038A; 2007.

  19. Roller N. A Losartan potassium hydrochlorothiazide pharmaceutical composition liposome solid preparation. CN101797230A; 2010.

  20. Minggui Y. Lisinopril and hydrochlorothiazide pharmaceutical composition liposome solid preparation. CN102166208B; 2011.

  21. Chongkai G; Huiqiu H; Ning L; Jie J. Osmotic pump controlled release tablet of losartan potassium and hydrochlorothiazide solid dispersion or inclusion compound. CN103006566 A; 2013.

  22. Górrniak A, Gajda M, Pluta J, Czapor-Irzabek H, Karolewicz B. Thermal, spectroscopic and dissolution studies of lovastatin solid dispersions with acetylsalicylic acid. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5279-z.

    Google Scholar 

  23. Khan KA, Rhodes CT. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.

    Article  CAS  Google Scholar 

  24. Oliveira MA, Yoshida MI, Silva DCGM. Quality evaluation of pharmaceutical formulations containing hydrochlorothiazide. Molecules. 2014;19:16824–36.

    Article  Google Scholar 

  25. Brazilian pharmacopoeia. Farmacopéia Brasileira. 5th ed. Brasília: Agência Nacional de Vigilância Sanitária; 2010. p. 546.

  26. Mashru RC, Sutariya VB, Sankalia MG, Yagnakumar P. Characterization of solid dispersions of rofecoxib using differential scanning calorimeter. J Therm Anal Calorim. 2005;82:167–70.

    Article  CAS  Google Scholar 

  27. Yu M, Sun L, Li W, Lan Z, Li B, Tan L, Li M, Yang X. Investigation of structure and dissolution properties of a solid dispersion of lansoprazole in polyvinylpyrrolidone. J Mol Struct. 2011;1005:70–7.

    Article  CAS  Google Scholar 

  28. Shi C, Tong Q, Fang J, Wang C, Wu J, Wang W. Preparation, characterization and in vivo studies of amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine. Eur J Pharm Sci. 2015;74:11–7.

    Article  CAS  Google Scholar 

  29. LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO III. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS Pharm Sci Tech. 2016;17:120–32.

    Article  CAS  Google Scholar 

  30. Nath MR, Saria M. Synthesis: isolation and characterization of hydrochlorothiazide dimer impurity. Int J Pharm Pharm Sci. 2013;5:867–71.

    CAS  Google Scholar 

  31. Padma PS, Rajendran NN, Lakshmi PK, Umadevi SK, Vaijayanthy V, Kausalya J, Ravichandran V. A novel captopril hydrochlorothiazide solid dispersion. Int J Pharm Pharm Sci. 2010;2:30–2.

    Google Scholar 

  32. Fousteris E, Tarantili PA, Karavas E, Bikiaris D. Poly(vinyl pyrrolidone)–poloxamer-188 solid dispersions prepared by hot melt extrusion: thermal properties and release behavior. J Therm Anal Calorim. 2013;113:1037–47.

    Article  CAS  Google Scholar 

  33. Trivedi RV, Admane PS, Taksande JB, Mahore JG, Umekar MJ. Solubility enhancement studies of hydrochlorothiazide by preparing solid dispersions using losartan potassium and urea by different methods. Der Pharm Lett. 2011;3:8–17.

    CAS  Google Scholar 

  34. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55:618–44.

    Article  CAS  Google Scholar 

  35. Ansel HC, Popovich NG, Allen LV. Formas Farmacêuticas and Sistemas de Liberação de Fármacos. 8th ed. São Paulo: Artmed; 2007.

    Google Scholar 

  36. Vieira ACQM, Marques GS, Melo CM, Silva KER, Rolim LA, Lima MCA, Galdino SL, Pitta IR, Rolim-Neto PJ. Physical–chemical characterization of new anti-inflammatory agent (LPSF/GQ-130) and evaluation of its thermal compatibility with pharmaceutical excipients. J Therm Anal Calorim. 2014;115:2339–49.

    Article  CAS  Google Scholar 

  37. Storpirtis S, Gonçalves JE, Chiann C, Gai MN. Biofarmacotécnica. 2ª ed. Rio de Janeiro: Editora Guanabara Koogan; 2011.

    Google Scholar 

  38. United States Pharmacopea and National Formulary USP 29-NF 24. Pharmacopeial Convention, Rockville; 2010.

  39. Mahle F, Goelzer F, Adriano J, Felippe M, Vier N, Carli RBG, Rosa T, Couto AG, Lucinda-Silva RM. Avaliação do perfil de dissolução de comprimidos de hidroclorotiazida comercializados no Brasil. Rev Ciênc Farm Básica Apl. 2007;28:265–71.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Coordination of Improvement of Higher Level Personnel (CAPES) for funding this work and to Laboratory of Evaluation and Development of Northeastern Biomaterials (CERTBIO) of the Federal University of Campina Grande and to Materials Engineering Laboratory of the Federal University of Paraíba by analysis provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinthya Maria Pereira de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, C.M.P., dos Santos, J.A.B., do Nascimento, A.L. et al. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim 131, 681–689 (2018). https://doi.org/10.1007/s10973-017-6091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6091-0

Keywords

Navigation