Skip to main content
Log in

Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyamide-6 (PA6)/carbon fiber (CF) composites were prepared by melt-extrusion via continuous fiber fed during extruding. The mechanical, thermal properties, and crystallization behavior of PA6/CF composites were investigated. It was found that the tensile modulus and strength of the composites were increased with the addition of CF, while their elongations at break were decreased. Scanning electron microscopy observation on the fracture surfaces showed the fine dispersion of CF and strong interfacial adhesion between fibers and matrix. Dynamic mechanical analysis results showed that the storage modulus of PA6/CF composites was improved with the addition of CF. Non-isothermal crystallization analysis showed that the CF plays a role as nucleating agent in PA6 matrix, and the α-form crystalline structure was favorable in the PA6/CF composites, as confirmed from the X-ray diffraction analysis. A trans-crystallization layer around CF could be observed by polarizing optical microscopy, which proved the nucleation effect of carbon fiber surface on the crystallization of PA6. The thermal stability of PA6/CF composites was also enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brydon JA. Plastics materials. London: Butterworth Scientific Press; 1982. p. 1–16.

    Google Scholar 

  2. Wu TM, Liao CS. Polymorphism in nylon6/clay nanocomposites. Macromol Chem Phys. 2000;201:2820–5.

    Article  CAS  Google Scholar 

  3. Grozdanov A, Bogoeva GG. Carbon fibers/polyamide6 composites based on hybrid yarns. J Thermoplast Compos. 2010;23:99–110.

    CAS  Google Scholar 

  4. Phang IY, Ma JH, Shen L, Liu TX, Zhang WD. Crystallization and melting behavior of multi-walled carbon nanotube reinforced nylon-6 composites. Polym Int. 2006;55:71–9.

    Article  CAS  Google Scholar 

  5. Liu T, Phang IY, Shen L, Chow SY, Zhang WD. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules. 2004;37:7214–22.

    Article  CAS  Google Scholar 

  6. Zhang WD, Shen L, Phang IY, Liu T. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules. 2004;37:256–9.

    Article  CAS  Google Scholar 

  7. Li J, Fang ZP, Zhu Y, Tong LF, Gu AJ, Liu F. Isothermal crystallization kinetics and melting behavior of multiwalled carbon nanotubes/polyamide-6 composites. J Appl Polym Sci. 2007;105:3531–42.

    Article  CAS  Google Scholar 

  8. Selen Ş, Ali D, Nevra E. Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber- and mineral-filled polyamide-6 composites. J Appl Polym Sci. 2012;125:E268–81.

    Article  Google Scholar 

  9. Wu BZ, Gong Y, Yang GS. Non-isothermal crystallization of polyamide 6 matrix in all-polyamide composites: crystallization kinetic, melting behavior, and crystal morphology. J Mater Sci. 2011;46:5184–91.

    Article  CAS  Google Scholar 

  10. Han KQ, Liu ZJ, Yu MH. Preparation and mechanical properties of long glass fiber reinforced PA6 composites prepared by a novel process. Macromol Mater Eng. 2005;290:688–94.

    Article  CAS  Google Scholar 

  11. Cartledge HCY, Baillie CA. Studies of microstructural and mechanical properties of nylon/glass composite. Part I: The effect of thermal processing on crystallinity, transcrystallinity and crystal phases. J Mater Sci. 1999;34:5099–111.

    Article  CAS  Google Scholar 

  12. Li TC, Ma J, Wang M, Tjiu WC, Liu T, Huang W. Effect of clay addition on the morphology and thermal behavior of polyamide 6. J Appl Polym Sci. 2006;103:1191–9.

    Article  Google Scholar 

  13. Clifford MJ, Wan T. Fibre reinforced nanocomposites: mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites. Polymer. 2010;51:535–9.

    Article  CAS  Google Scholar 

  14. Popov A, Bogdanov B, Petrova I, Gyurova K, Nedelchev N, Velev V. Thermal studies on polycaprolactam. J Therm Anal Calorim. 2013;111:1539–44.

    Article  CAS  Google Scholar 

  15. Antonio G, Alfonso M, Emanuela C, Claudia M, Roberto T. An investigation into sintering of PA6 nanocomposite powders for rotational molding. J Therm Anal Calorim. 2012;109:1493–502.

    Article  Google Scholar 

  16. Tsotra P, Friedrich K. Short carbon fiber reinforced epoxy resin/polyaniline blends: their electrical and mechanical properties. Compos Sci Technol. 2004;64:2385–91.

    Article  CAS  Google Scholar 

  17. Das NC, Chaki TK, Khastgir D. Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon. 2002;40:807–16.

    Article  CAS  Google Scholar 

  18. Xi Y, Ishikawa H, Bin YZ, Matsuo M. Positive temperature coefficient effect of LMWPE–UHMWPE blends filled with short carbon fibers. Carbon. 2004;42:1699–706.

    Article  CAS  Google Scholar 

  19. Rezaei F, Yunus R, Ibrahim NA. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2009;30:260–3.

    Article  CAS  Google Scholar 

  20. Rezaei F, Yunus R, Ibrahim NA, Mahdi ES. Development of short carbon fiber reinforced polypropylene composite for car bonnet. Polym-plast Technol. 2008;47:351–7.

    Article  CAS  Google Scholar 

  21. Mahta SV, Salleh MAM, Yunus R, Dayang RAB, Danafar F, Mirjalili F. Effect of short carbon fiber surface treatment on composite properties. J Compos Mater. 2011;45:1885–91.

    Article  Google Scholar 

  22. Li J, Cai CL. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Curr Appl Phys. 2011;11:50–4.

    Article  Google Scholar 

  23. Zheng LJ, Qi JG, Zhang QH, Zhou WF, Liu D. Crystal morphology and isothermal crystallization kinetics of short carbon fiber/poly(ethylene 2,6-naphthalate) composites. J Appl Polym Sci. 2008;108:650–8.

    Article  CAS  Google Scholar 

  24. Run MT, Song HZ, Wang SJ, Bai LB, Jia YH. Crystal morphology, melting behaviors and isothermal crystallization kinetics of SCF/PTT composites. Polym Compos. 2009;30:87–94.

    Article  CAS  Google Scholar 

  25. Run MT, Song HZ, Yao CG, Wang YJ. Crystal morphology and non-isothermal crystallization kinetics of short carbon fiber/poly(trimethylene terephthalate) composites. J Appl Polym Sci. 2007;106:868–77.

    Article  CAS  Google Scholar 

  26. Ye L, Friedrich K, Kästel J, Mai YW. Consolidation of unidirectional CF/PEEK composites from commingled yarn prepreg. Compos Sci Technol. 1995;54:349–58.

    Article  CAS  Google Scholar 

  27. Karsli NG, Aytac A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2011;32:4069–73.

    Article  CAS  Google Scholar 

  28. Li J, Xia YC. Evaluation of tribological properties of carbon fiber-reinforced PA6 composites. Polym Compos. 2010;31:536–42.

    Article  CAS  Google Scholar 

  29. Kaynak C, Orgun O, Tincer T. Matrix and interface modification of short carbon fiber-reinforced epoxy. Polym Test. 2005;24:455–62.

    Article  CAS  Google Scholar 

  30. Mayer C, Wang X, Neitzel M. Macro- and micro-impregnation phenomena in continuous manufacturing of fabric reinforced thermoplastic composites. Compos Part A Appl S. 1998;29A:783–93.

    Article  CAS  Google Scholar 

  31. Illers KH. Polymorphie, Kristallinität und Schmelzwärme von poly(ε-caprolactam),2. Makromol Chem. 1978;179:497–507.

    Article  CAS  Google Scholar 

  32. Ozkoc G, Bayram G, Bayramlı E. Short glass fiber reinforced ABS and ABS/PA6 composites: processing and characterization. Polym Compos. 2005;26:745–55.

    Article  CAS  Google Scholar 

  33. Fu SY, Lauke B, Mader E, Hu X, Yue CY. Tensile properties of short-glass-fiber and short-carbon-fiber-reinforced polypropylene composites. Compos Part A Appl S. 2000;31:1117–25.

    Article  Google Scholar 

  34. Joseph PV, Mathew G, Jeseph K, Groeninckx G, Sabu T. Dynamic mechanical of short sisal fiber reinforced polypropylene composites. Compos Part A Appl S. 2003;34:275–90.

    Article  Google Scholar 

  35. Pittman CU, Jiang W, Yue ZR, Gardner SD, Wang L. Surface properties of electrochemically oxidized carbon fibers. Carbon. 1999;37:1797–807.

    Article  CAS  Google Scholar 

  36. Zhao XY, Zhang BZ. The effects of annealing (solid and melt) on the time evolution of the polymorphic structure of polyamide 6. J Appl Polym Sci. 2010;115:1688–94.

    Article  CAS  Google Scholar 

  37. Bunn CW, Garner EV. The crystal structures of two polyamides (nylons). Proc R Soc Lond A Mat. 1947;189:39.

    Article  CAS  Google Scholar 

  38. Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites. Polymer. 2003;44:3945–61.

    Article  CAS  Google Scholar 

  39. Wang HL, Shi TJ, Yang SZ, Hang GP. Crystallization behavior of PA6/SiO2 organic–inorganic hybrid material. Mater Res Bull. 2006;41:298–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Xu, Y., Wei, Z. et al. Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites. J Therm Anal Calorim 115, 209–218 (2014). https://doi.org/10.1007/s10973-013-3184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3184-2

Keywords

Navigation