Skip to main content

Advertisement

Log in

Antibacterial wollastonite supported excellent proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stromal cells

  • Original Paper: Sol–gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Biocompatibility and bacterial infections are the primary concerns associated with the current bone graft substitutes. The application of wollastonite-based scaffolds for bone tissue engineering becomes a novel subject of interest. In the present study, a single phasic wollastonite scaffold was synthesised using citric acid-based sol–gel combustion route. Its physicochemical characteristics, antibacterial properties as well as its biocompatibility and osteogenic induction effect on human bone marrow derived stromal cells (hBMSCs) are yet to be explored. The TGA/DTA, XRD and SEM/EDX confirmed the characteristics of wollastonite. The antibacterial test indicated wollastonite inhibition of 47.81% and 45.54% for gram-positive, Staphylococcus aureus and Staphylococcus epidermidis and 47.04% and 46.07% for gram-negative, Escherichia coli and Pseudomonas aeruginosa bacterial strains, respectively. The SEM micrographs demonstrated an excellent attachment of hBMSCs on wollastonite and comparable to commercial hydroxyapatite (cHA) scaffold. The alamar blue cell proliferation assay confirmed 1.7- and 1.8-fold significant increase in hBMSCs seeded on wollastonite and cHA scaffold, respectively, on day 14 as compared with day 1. The immunohistochemistry analysis on Type-I collagen (Col1) and Bone morphogenetic protein-2 (BMP2) expression on day 14 confirmed the osteogenic differentiation of hBMSCs seeded on wollastonite and comparable with cHA scaffold. In conclusion, wollastonite scaffold has a greater potential to substitute bone grafts in orthopaedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zakaria MY, Sulong AB, Muhamad N, Raza MR, Ramli MI (2019) Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview. Mater Sci Eng C 97:884–895. https://doi.org/10.1016/j.msec.2018.12.056

    Article  CAS  Google Scholar 

  2. Affatato S, Ruggiero A, Merola M (2015) Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos B Eng 83:276–283. https://doi.org/10.1016/j.compositesb.2015.07.019

    Article  CAS  Google Scholar 

  3. Patel NR, Gohil PP (2012) A review on biomaterials: scope, applications and human anatomy significance. Int J Adv Res Technol 2:91–101.

  4. Yuan H, de Bruijn JD, Zhang X, Van Blitterswijk CA, De Groot K (2001) Bone induction by porous glass ceramic made from Bioglass®(45S5) J Biomed Mater Res 58:270–276. https://doi.org/10.1002/1097-4636(2001)58:33.0.CO;2-2

    Article  CAS  Google Scholar 

  5. Kalita SJ, Bhardwaj A, Bhatt HA (2007) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27:441–449. https://doi.org/10.1016/j.msec.2006.05.018

    Article  CAS  Google Scholar 

  6. Rizwan M, Genasan K, Murali MR, Raghavendran HRB, Alias R, Cheok YY, Wong WF, Mansor A, Hamdi M, Basirun WJ (2020) In vitro evaluation of novel low-pressure spark plasma sintered HA–BG composite scaffolds for bone tissue engineering. Rsc Adv 10:23813–23828. https://doi.org/10.1039/DORA04227G

    Article  CAS  Google Scholar 

  7. Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, Choudhary R, Sasikumar S, Kamarul T (2019) The physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells. PloS one 14:e0214212. https://doi.org/10.1371/journal.pone.0214212

    Article  CAS  Google Scholar 

  8. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, Sasikumar S, Locs J (2016) In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method. Mater Sci Eng C 68:89–100. https://doi.org/10.1016/j.msec.2016.04.110

    Article  CAS  Google Scholar 

  9. Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, Suresh A, Abraham J, Swamiappan S (2021) Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics. Mater Sci Eng C 118:111466. https://doi.org/10.1016/j.msec.2020.111466

    Article  CAS  Google Scholar 

  10. Wang C, Wang D, Yang R, Wang H (2019) Preparation and electrical properties of wollastonite coated with antimony-doped tin oxide nanoparticles. Powder Technol 342:397–403. https://doi.org/10.1016/j.powtec.2018.09.092

    Article  CAS  Google Scholar 

  11. Azarov GM, Maiorova EV, Oborina MA, Belyakov AV (1995) Wollastonite raw materials and their applications (a review). Glass Ceram 52:237–240. https://doi.org/10.1007/BF00681090

    Article  Google Scholar 

  12. Liverani L, Guarino V, La Carrubba V, Boccaccini AR (2019) Porous biomaterials and scaffolds for tissue engineering. In: Roger Narayan (ed) Encyclopedia of Biomedical Engineering. FAU-CRIS, Germany, pp188–202.

  13. Bouatrous M, Bouzerara F, Bhakta AK, Delobel F, Delhalle J, Mekhalif Z (2020) A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations. Ceram Int 46:12618–12625. https://doi.org/10.1016/j.ceramint.2020.02.026

    Article  CAS  Google Scholar 

  14. Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:1–33. https://doi.org/10.1038/boneres.2017.59

    Article  CAS  Google Scholar 

  15. Juraski ADC, Rodas ACD, Elsayed H, Bernardo E, Soares VO, Daguano J (2017) The in vitro bioactivity, degradation, and cytotoxicity of polymer-derived wollastonite-diopside glass-ceramics. Materials 10:425. https://doi.org/10.3390/ma10040425

    Article  CAS  Google Scholar 

  16. Reddy MV, Pathak M (2018) Sol-gel combustion synthesis of Ag doped CaSiO3: in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications. Mater Technol 33:38–47. https://doi.org/10.1080/10667857.2017.1389050

    Article  CAS  Google Scholar 

  17. Marsh AC, Mellott NP, Crimp M, Wren A, Hammer N, Chatzistavrou X (2021) Ag-doped bioactive glass-ceramic 3D scaffolds: microstructural, antibacterial, and biological properties. J Eur Ceram Soc 41:3717–3730. https://doi.org/10.1016/j.jeurceramsoc.2021.01.011

    Article  CAS  Google Scholar 

  18. Palakurthy S (2019) In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications. Ceram Int 45:25044–25051. https://doi.org/10.1016/j.ceramint.2019.03.169

    Article  CAS  Google Scholar 

  19. Dordane R, Doroodmand MM (2021) Novel method for scalable synthesis of wollastonite nanoparticle as nano-filler in composites for promotion of anti-corrosive property. Sci Rep. 11:2579. https://doi.org/10.1038/s41598-021-81875-4

    Article  CAS  Google Scholar 

  20. Udduttula A, Koppala S, Swamiappan S (2013) Sol-gel combustion synthesis of nanocrystalline wollastonite by using glycine as a fuel and its in vitro bioactivity studies. T Indian Ceram Soc 72:257–260. https://doi.org/10.1080/0371750X.2013.867641

    Article  CAS  Google Scholar 

  21. Anjaneyulu U, Sasikumar S (2014) Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci 37:207–212. https://doi.org/10.1007/s12034-014-0646-5

    Article  CAS  Google Scholar 

  22. Venkatraman SK, Swamiappan S (2019) Synthesis, bioactivity and mechanical stability of Mg/Ca silicate biocomposites developed for tissue engineering applications. ChemistrySelect 4:13099–13108. https://doi.org/10.1002/slct.201902780

    Article  CAS  Google Scholar 

  23. Choudhary R, Chatterjee A, Venkatraman SK, Koppala S, Abraham J, Swamiappan S (2018) Antibacterial forsterite (Mg2SiO4) scaffold: a promising bioceramic for load bearing applications. Bioact Mater 3:218–224. https://doi.org/10.1016/j.bioactmat.2018.03.003

    Article  Google Scholar 

  24. Gentile F, Tirinato L, Battista E, Causa F, Liberale C, Di Fabrizio EM, Decuzzi P (2010) Cells preferentially grow on rough substrates. Biomaterials 31:7205–7212. https://doi.org/10.1016/j.biomaterials.2010.06.016

    Article  CAS  Google Scholar 

  25. Purohit RD, Tyagi AK (2002) Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J Mater Chem 12:312–316. https://doi.org/10.1039/B103461H

    Article  CAS  Google Scholar 

  26. Venkatraman SK, Swamiappan S (2020) Review on calcium‐and magnesium‐based silicates for bone tissue engineering applications. J Biomed Mater Res A 108:1546–1562. https://doi.org/10.1002/jbm.a.36925

    Article  CAS  Google Scholar 

  27. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. https://doi.org/10.1016/j.watres.2008.08.015

    Article  CAS  Google Scholar 

  28. Granéli C, Thorfve A, Ruetschi U, Brisby H, Thomsen P, Lindahl A, Karlsson C (2014) Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res 12:153–165. https://doi.org/10.1016/j.scr.2013.09.009

    Article  CAS  Google Scholar 

  29. Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63:464–474. https://doi.org/10.1373/clinchem.2016.259085

    Article  CAS  Google Scholar 

  30. Lund AW, Stegemann JP, Plopper GE (2009) Mesenchymal stem cells sense three-dimensional type I collagen through discoidin domain receptor 1. Open Stem Cell J 1:40. https://doi.org/10.2174/1876893800901010040

    Article  CAS  Google Scholar 

  31. Cerrutti M, Sahai N (2006) Silicate biomaterials for orthopaedic and dental implants. Rev Miner Geochem 64:283–313. https://doi.org/10.2138/rmg.2006.64.9

    Article  CAS  Google Scholar 

  32. Azeena S, Subhapradha N, Selvamurugan N, Narayan S, Srinivasan N, Murugesan R, Moorthi A (2017) Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Mater Sci Eng C 71:1156–1165. https://doi.org/10.1016/j.msec.2016.11.118

    Article  CAS  Google Scholar 

  33. Li L, Zhang M, Li Y, Zhao J, Qin L, Lai Y (2017) Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. Regen Biomater 4:129–137. https://doi.org/10.1093/rb/rbx004

    Article  CAS  Google Scholar 

  34. Choudhary R, Venkatraman SK, Bulygina I et al. (2020) Impact of forsterite addition on mechanical and biological properties of composites. J Asian Ceram Societies 8:1051–1065. https://doi.org/10.1080/21870764.2020.1807695

    Article  Google Scholar 

  35. Riaz M, Zia R, Fatima F, Bashir F, Hussain T (2020) Characterization, bioactivity and antimicrobial properties of a metal-ceramic composite for bone regeneration. Ceram Int 46:16663–16669. https://doi.org/10.1016/j.ceramint.2020.03.239

    Article  CAS  Google Scholar 

  36. Mohamed Abudhahir K, Murugesan R, Vijayashree R, Selvamurugan N, Chung TW, Moorthi A (2020) Metal doped calcium silicate biomaterial for skin tissue regeneration in vitro. J Biomater Appl 0885328220962607. https://doi.org/10.1177/0885328220962607

  37. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68:355–369. https://doi.org/10.1007/s10616-015-9895-4

    Article  CAS  Google Scholar 

  38. Qin Y, Guan J, Zhang C (2014) Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J 90:643–647. https://doi.org/10.1136/postgradmedj-2013-132387

    Article  Google Scholar 

  39. Stamnitz S, Klimczak A (2021) Mesenchymal stem cells, bioactive factors, and scaffolds in bone repair: from research perspectives to clinical practice. Cells 10:1925. https://doi.org/10.3390/cells10081925

    Article  Google Scholar 

  40. Kihara T, Hirose M, Oshima A, Ohgushi H (2006) Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. BiochemBioph Res Co 341:1029–1035. https://doi.org/10.1016/j.bbrc.2006.01.059

    Article  CAS  Google Scholar 

  41. Sun J, Li J, Li C, Yu Y (2015) Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep 12:4230–4237. https://doi.org/10.3892/mmr.2015.3954

    Article  CAS  Google Scholar 

  42. Date T, Doiguchi Y, Nobuta M, Shindo H (2004) Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci 9:503–508. https://doi.org/10.1007/s00776-004-0815-2

    Article  CAS  Google Scholar 

  43. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Investig 118:421–428. https://doi.org/10.1172/JCI33612

    Article  CAS  Google Scholar 

  44. Tang Z, Li X, Tan Y, Fan H, Zhang X (2018) The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 5(43-59):5. https://doi.org/10.1093/rb/rbx024

    Article  CAS  Google Scholar 

  45. Tavares MT, Oliveira MB, Mano JF, Farinha JPS, Baleizão C (2020) Bioactive silica nanoparticles with calcium and phosphate for single dose osteogenic differentiation. Mater Sci Eng C107:110348. https://doi.org/10.1016/j.msec.2019.110348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Vellore Institute of Technology (VIT) management for the support and DST-FIST for the XRD and SEM-EDX facility. The authors gratefully acknowledge the financial support from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No. 857287. The authors would like to express their highest gratitude to Ministry of Higher Education for fundamental research grant scheme (FRGS)—FRGS/1/2018/SKK08/UM/01/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasikumar Swamiappan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, S.K., Choudhary, R., Genasan, K. et al. Antibacterial wollastonite supported excellent proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. J Sol-Gel Sci Technol 100, 506–516 (2021). https://doi.org/10.1007/s10971-021-05657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05657-0

Keywords

Navigation