Skip to main content
Log in

Electrical Conductance Studies in Aqueous Solutions with Aspartic Ions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivity measurements of dilute aqueous solutions of DL-aspartic acid, potassium-DL-aspartate and magnesium-DL-aspartate were performed in the 288.15 to 323.15 K temperature range. The limiting molar conductances of aspartate anions, λ 0(HAsp,T) and the dissociation constants of aspartic acid, K 2(T) were derived by use of the Debye-Hückel equation for the activity coefficients and the Onsager, and Quint and Viallard conductivity equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenstein, J.P., Winitz, M.: Chemistry of the Amino Acids. Wiley, New York (1961)

    Google Scholar 

  2. Hoskins, W.M., Randall, M., Schmidt, C.L.A.: The conductance and activity coefficients of glutamic and aspartic acids and their monosodium salts. J. Biol. Chem. 88, 215–239 (1930)

    CAS  Google Scholar 

  3. Dunn, M.S., Ross, F.J., Read, L.S.: The solubility of the amino acids in water. J. Biol. Chem. 103, 579–595 (1933)

    CAS  Google Scholar 

  4. Dalton, J.B., Schmidt, C.L.A.: The solubilities of certain amino acids in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molar volumes. J. Biol. Chem. 103, 549–578 (1933)

    CAS  Google Scholar 

  5. Millero, F.J., Surdo, A.S., Shin, C.: The apparent molar volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  6. Rao, M.V.R., Atreyi, M., Rajeswari, M.R.: Partial molar volumes of α-amino acids with ionogenic side chains in water. J. Phys. Chem. 88, 3129–3131 (1984)

    Article  CAS  Google Scholar 

  7. Jolicoeur, C., Riedl, B., Desrochers, D., Lemelin, L.L., Zamojska, R., Enea, O.: Solvation of amino acid residues in water and urea-water mixtures: Volumes and heat capacities of 20 amino acids in water and in 8 molar urea at 25 °C. J. Solution Chem. 15, 109–128 (1986)

    Article  CAS  Google Scholar 

  8. Rao, M.V.R., Atreyi, M., Rajeswari, M.R.: Specific interactions between amino acid chains—a partial volume study. Can. J. Chem. 66, 487–490 (1988)

    Article  CAS  Google Scholar 

  9. Hakin, A.W., Duke, M.M., Marty, J.L., Preuss, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: Group additivity analyses of standard-state volumes and heat capacities. J. Chem. Soc. Faraday Trans. 90, 2027–2035 (1994)

    Article  CAS  Google Scholar 

  10. Yasuda, Y., Tochio, N., Sakurai, M., Nitta, K.: Partial molar volumes and isentropic compressibilities of amino acids in dilute aqueous solutions. J. Chem. Eng. Data 43, 205–214 (1998)

    Article  CAS  Google Scholar 

  11. Ziemer, S.P., Woolley, E.M.: Thermodynamics of the first and second proton dissociations from aqueous L-aspartic acid and L-glutamic acid at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa; Apparent molar heat capacities and apparent molar volumes of zwitterionic, protonated cationic and deprotonated anionic forms at molalities from (0.002 to 1.0) mol.kg−1. J. Chem. Thermodyn. 39, 645–666 (2007)

    Article  CAS  Google Scholar 

  12. Edsall, J.T., Blanchard, M.H.: The activity ratio of zwitterions and uncharged molecules in ampholyte solutions. The dissociation constants of amino acid esters. J. Am. Chem. Soc. 55, 2353–2337 (1933)

    Article  Google Scholar 

  13. Miyamoto, S., Schmidt, C.L.A.: The apparent dissociation constants of phenylalanine and of dihydroxyphenylalanine and the apparent free energy and entropy changes of certain amino acids due to ionization. J. Biol. Chem. 90, 165–178 (1931)

    CAS  Google Scholar 

  14. Kortüm, G., Vogel, W., Andrussow, K.: Dissociation Constants of Organic Acids in Aqueous Solution. Butterworths, London (1961)

    Google Scholar 

  15. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1965)

    Google Scholar 

  16. Martell, A.E., Smith, R.M.: Critical Stability Constants. Amino Acids. Plenum Press, New York (1974)

    Google Scholar 

  17. Partanen, J.I., Juusola, P.M., Minkkinen, P.O.: Determination of the thermodynamic values of the first and second dissociation constants of aspartic acid in aqueous solutions at 298.15 K by means of formulas for ionic activity coefficients. Acta Chem. Scand. 49, 163–171 (1995)

    Article  CAS  Google Scholar 

  18. Hoskins, W.M., Randall, M., Schmidt, C.L.A.: The conductance and activity coefficients of glutamic and aspartic acids and their monosodium salts. J. Biol. Chem. 88, 215–239 (1930)

    CAS  Google Scholar 

  19. Miyamoto, S., Schmidt, C.L.A.: Transference and conductivity studies on solutions of certain protein and amino acids with special reference to the formation of complex ions between the alkaline earth elements and certain proteins. J. Biol. Chem. 99, 335–358 (1933)

    CAS  Google Scholar 

  20. Mehl, J.W., Schmidt, C.L.A.: The conductivities of aqueous solutions of glycine, d,l-valine and l-asparagine. J. Gen. Physiol. 18, 467–479 (1935)

    Article  CAS  Google Scholar 

  21. Rajeswari, M.R.: Electrostatic interactions between side chains of α-amino acids: Conductance studies. J. Biochem. Mol. Biol. Biophys. 2, 287–292 (1999)

    CAS  Google Scholar 

  22. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd. edn. Reinhold, New York (1958)

    Google Scholar 

  23. Apelblat, A., Azoulay, D., Sahar, A.: Properties of aqueous thorium nitrate solutions. Part 1, Densities, viscosities, conductivities, pH, solubility and activities at freezing point. J. Chem. Soc. Faraday Trans. I 69, 1618–1623 (1973)

    Article  CAS  Google Scholar 

  24. Brummer, S.B., Hills, G.J.: Kinetics of ionic conductance. Trans. Faraday Soc. 57, 1816–1822 (1961)

    Article  CAS  Google Scholar 

  25. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  26. Harris, D.C.: Quantitative Chemical Analysis. Freeman, San Francisco (1982)

    Google Scholar 

  27. Quint, J.: Contribution à l’étude de la conductibilité électrique des mélanges d’électrolytes. PhD Thesis, University Clermont-Ferrand, April (1976)

  28. Quint, J., Viallard, A.: Electrical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  29. Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liquids 95, 99–145 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apelblat, A., Manzurola, E. & Orekhova, Z. Electrical Conductance Studies in Aqueous Solutions with Aspartic Ions. J Solution Chem 37, 97–105 (2008). https://doi.org/10.1007/s10953-007-9223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9223-5

Keywords

Navigation