Skip to main content
Log in

A Potentiometric, Spectrophotometric and Pitzer Ion-Interaction Study of Reaction Equilibria in the Aqueous H+-Al3+, H+-Oxalate and H+-Al3+-Oxalate Systems up to 5 mol⋅dm−3 NaCl

  • Special Issue Dedicated to Joseph Antoine Rard
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous speciation of the mixed H+-Al3+-oxalate (L) system at equilibrium was determined by potentiometry in solutions of 0.1, 1.6 and 3.0 mol⋅dm−3 NaCl and by spectrophotometry in solutions of 5.0 mol⋅dm−3 NaCl at 298.2 K. These experiments enabled the description of the ionic strength dependence of the AlL+,AlL 2 and AlL 3−3 species and the formulation of a Pitzer ion-interaction model. The accuracy of our aqueous speciation calculations for this mixed system was also strengthened by experimental validation of previously-established models for the protonation of oxalate in the H+-L system and of the hydrolysis of Al3+ in the H+-Al3+ system. The latter system also enabled the formulation of a new Pitzer ion-interaction model for the heptavalently-charged Al13O4(OH) 7+24 Keggin ion to 3.0 mol⋅dm−3 NaCl. The proposed set of parameters can be used to predict chemical speciation in the mixed H+-Al3+-L system in aqueous solutions of NaCl up to 5.0 mol⋅dm−3 (5.6 mol⋅kg−1 NaCl) at 298.2 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Felmy, A.R., Mason, M.J., Qafoku, O., Dixon, D.A.: Development of accurate chemical equilibrium models for the Hanford tanks: The system Na-Ca-Sr-OH-CO3-NO3-EDTA-HEDTA-H2O. In: Subsurface Contamination Remediation: Accomplishments of the Environmental Management Sciences Program, ACS Symposium Series, vol. 904 (2005)

  2. Bechtold, D.B., Cooke, G.A., Herting, D.L., Viswanth, R.S., Warrant, R.W.: Laboratory testing of oxalic acid dissolution of tank 241-C-106 sludge. RPP-17158, Rev. 0, July 10, 2003, Fluor Hanford, Richland, Washington

  3. Sjöberg, S., Öhman, L.O.: Equilibrium and structural studies of silicon(IV) and aluminum(III) in aqueous solution. 13. A potentiometric and Al-27 nuclear magnetic resonance study of speciation and equilibria in the aluminum(III) oxalic acid hydroxide system. J. Chem. Soc. Dalton Trans. 12, 2665–2669 (1985)

    Article  Google Scholar 

  4. Clausén, M., Öhman, L.O., Axe, K., Persson, P.: Spectroscopic studies of aluminum and gallium complexes with oxalate and malonate in aqueous solution. J. Mol. Struct. 648, 225–235 (2003)

    Article  Google Scholar 

  5. Philips, B.L., Neugebauer Crawford, S., Casey, W.H.: Rate of water exchange between Al(C2O4)(H2O) +4 (aq) complexes and aqueous solutions determined by 17O-NMR spectroscopy. Geochim. Cosmochim. Acta 61, 4965–4973 (1997)

    Article  Google Scholar 

  6. Bodor, A., Tóth, I., Bányai, I., Zékány, L.S., Sjöberg, S.: Studies of equilibrium, structure, and dynamics in the aqueous Al(III)-oxalate-fluoride system by potentiometry, 13C and 19F NMR spectroscopy. Geochim. Cosmochim. Acta 67, 2793–2803 (2003)

    Article  CAS  Google Scholar 

  7. Ciavatta, L., Iuliano, M., Porto, R.: A potentiometric study of aluminium(III) hydroxo oxalates. Ann. Chim. 89, 51–61 (1999)

    CAS  Google Scholar 

  8. Bottari, E., Ciavatta, L.: Studio potenziometrico dei complessi Al(III)-ossaloto. Gazz. Chim. Ital. 98, 1004–1013 (1968)

    CAS  Google Scholar 

  9. Thomas, F., Masion, A., Bottero, J.Y., Rouiller, J., Genevrier, F., Boudot, D.: Aluminum(III) speciation with acetate and oxalate—A potentiometric and Al-27 NMR study. Environ. Sci. Technol. 25, 1553–1559 (1991)

    Article  CAS  Google Scholar 

  10. Tait, C.D., Janecky, D.R., Clark, D.L., Bennett, P.C.: Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures. In: Kharaka, Maest (eds.) Proceedings of the 7th International Symposium on Water-Rock Interaction, vol. 2, Park City, UT, July 13–18, 1992

  11. Fein, J.B., Hestrin, J.E.: Experimental studies of oxalate complexation at 80 °C: gibbsite, amorphous silica, and quartz solubilities in oxalate-bearing fluids. Geochim. Cosmochim. Acta 58, 4817–4829 (1994)

    Article  CAS  Google Scholar 

  12. Venema, F.R., Peters, J.A., van Bekkum, H.: Multinuclear magnetic resonance study of the co-ordination of aluminium(III) with glycolic acid in aqueous solution, compared to co-ordination with oxalic and malonic acid. J. Chem. Soc. Dalton Trans., 2137–2143 (1990)

  13. Babko, A.K., Dubovenko, L.I.: Oxalate complexes of aluminum. Zh. Neorg. Khim. 2, 1294–1305 (1957)

    CAS  Google Scholar 

  14. Fein, J.B.: Experimental study of aluminum-oxalate complexing at 80 °C: Implications for the formation of secondary porosity within sedimentary reservoirs. Geology 19, 1037–1040 (1991)

    Article  CAS  Google Scholar 

  15. Kiss, T., Sóvágó, I., Martin, R.B., Pursiainen, J.: Ternary complex formation between Al(III)-adenosine-5’-phosphates and carboxylic acid derivatives. J. Inorg. Biochem. 55, 53–65 (1994)

    Article  CAS  Google Scholar 

  16. Jaber, M., Bertin, F., Thomas-David, G.: Application de la spectrométrie infrarouge, Raman et résonance magnétique nucléaire á l’étude des complexes en solution aqueuse. Al3+-H2C2O4. Can. J. Chem. 55, 3689–3699 (1977)

    Article  CAS  Google Scholar 

  17. Kettler, R.M., Palmer, D.A., Wesolowski, D.J.: Comment on “Predictions of diagenetic reactions in the presence of organic acids” by W.J. Harrison and G.D. Thyne. Geochim. Cosmochim. Acta 59, 3483–3851 (1995)

    Article  Google Scholar 

  18. Furrer, G.: Die Oberflächenkontrollierte Ausflösung von Metalloxiden: Ein Koordinationschemischer Ansatz zur Verwitterungskinetik. Swiss Federal Institute of Technology, ETH, Switzerland (1985)

    Google Scholar 

  19. Kettler, R.M., Palmer, D.A., Wesolowski, D.J.: Dissociation quotients of oxalic acid in aqueous sodium chloride media to 175 °C. J. Solution Chem. 20, 905–927 (1991)

    Article  CAS  Google Scholar 

  20. Kettler, R.M., Wesolowski, D.J., Palmer, D.A.: Dissociation constants of oxalic acid in aqueous sodium chloride and sodium trifluoromethanesulfate media to 175 °C. J. Chem. Eng. Data 43, 337–350 (1998)

    Article  CAS  Google Scholar 

  21. Mizera, J., Bond, A.H., Choppin, G.R., Moore, R.C.: Dissociation constants of carboxylic acids at high ionic strengths. In: Reed, D.T., Clark, S.B., Rao, L. (eds.) In: Actinide Speciation in High Ionic Strength Media, pp. 113–124. Kluwer Academic/Plenum, New York (1999)

    Google Scholar 

  22. Palmer, D.A., Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solution. II. The solubility of gibbsite in acidic sodium chloride solutions from 30 °C to 70 °C. Geochim. Cosmochim. Acta 56, 1093–1111 (1992)

    Article  CAS  Google Scholar 

  23. Palmer, D.A., Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solution: III. Potentiometric determination of the first hydrolysis constant of aluminum(III) in sodium chloride solutions to 125 °C. Geochim. Cosmochim. Acta 57, 2929–2938 (1993)

    Article  CAS  Google Scholar 

  24. Couturier, Y., Michard, G., Sarazin, G.: Constantes de formation des complexes hydroxydés de l’aluminium en solution aqueuse de 20 a 70 °C. Geochim. Cosmochim. Acta 48, 649–659 (1984)

    Article  CAS  Google Scholar 

  25. Wesolowski, D.J., Palmer, D.A.: Aluminum speciation and equilibria in aqueous solution. V. Gibbsite solubility at 50 °C and pH 3–9 in 0.1 molal NaCl solutions (a general model for aluminum speciation; analytical methods). Geochim. Cosmochim. Acta 58, 2957–2969 (1994)

    Article  Google Scholar 

  26. Öhman, L.O., Forsling, W.: Equilibrium and structural studies of silicon(IV) and aluminum(III) in aqueous solution. 3. A potentiometric study of aluminum(III) hydrolysis and aluminum(III) hydroxo carbonates in 0.6 M Na(Cl). Acta Chem. Scand. Ser. A 35, 795 (1981)

    Article  Google Scholar 

  27. Volokhov, Y.A., Pavlov, L.N., Eremin, N.I., Mironov, V.E.: Hydrolysis of aluminum salts. J. Appl. Chem. 44, 243–246 (1971)

    Google Scholar 

  28. Schofield, R.K., Taylor, A.W.: The hydrolysis of aluminum salt solutions. J. Chem. Soc., 4445–4448 (1954)

  29. Frink, C.R., Peech, M.: Hydrolysis of the aluminum ion in dilute solutions. Inorg. Chem. 2, 473–378 (1963)

    Article  CAS  Google Scholar 

  30. Macdonald, D.D., Butler, P., Owen, D.: Hydrothermal hydrolysis of Al3+ and the precipitation of boehmite from aqueous solution. J. Phys. Chem. 77, 2474–2479 (1973)

    Article  CAS  Google Scholar 

  31. Mesmer, R.E., Baes Jr., C.F.: Acidity measurements at elevated temperatures. V. Aluminum ion hydrolysis. Inorg. Chem. 10, 2290–2296 (1971)

    Article  CAS  Google Scholar 

  32. Sjöberg, S., Hägglund, Y., Nordin, A., Ingri, N.: Equilibrium and structural studies of silicon(IV) and aluminum(III) in aqueous solution. 5. Acidity constants of silicilic acid and the ionic product of water in the medium range 0.05–2.0 M Na(Cl) at 25 °C. Mar. Chem. 13, 35 (1983)

    Article  Google Scholar 

  33. Busey, R.H., Mesmer, R.E.: Thermodynamic quantities for the ionization of water in sodium chloride media to 300 °C. J. Chem. Eng. Data 23, 175–176 (1978)

    Article  CAS  Google Scholar 

  34. Westall, J.C.: FITEQL: A computer program for determination of chemical equilibrium constants from experimental data. Version 2.0, Report 82-02, Department of Chemistry, Oregon State University (1982)

  35. Boily, J.-F., Suleimenov, O.M.: Extraction of chemical speciation and molar absorption coefficients with well-posed solutions of Beer’s law. J. Solution Chem. 35, 917–926 (2006)

    Article  CAS  Google Scholar 

  36. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)

    Article  Google Scholar 

  37. Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chim. 49, 612–617 (1977)

    Article  CAS  Google Scholar 

  38. Marquardt, D.W.: An algorithm for least-square estimates of nonlinear parameters. SIAM J. Opt. 11, 431–441 (1963)

    Google Scholar 

  39. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  40. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC (1991)

  41. Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  42. Felmy, A.R., Weare, J.H.: The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California. Geochim. Cosmochim. Acta 50, 2771–2783 (1986)

    Article  CAS  Google Scholar 

  43. Felmy, A.R., Rai, D., Schramke, J.A., Ryan, J.L.: The solubility of plutonium hydroxide in dilute solution and in high-ionic-strength chloride brines. Radiochim. Acta 48, 29–35 (1989)

    CAS  Google Scholar 

  44. Simonson, J.M., Oakes, C.S., Bodnar, R.J.: Densities of NaCl(aq) to the temperature 523 K at pressures to 40 MPa measured with a new vibrating-tube densitometer. J. Chem. Thermodyn. 26, 345–359 (1994)

    Article  CAS  Google Scholar 

  45. Holmes, H.F., Busey, R.H., Simonson, J.M., Mesmer, R.E., Archer, D.G., Wood, R.H.: The enthalpy of dilution of HCl(aq) to 648 K and 40 MPa. Thermodynamic properties. J. Chem. Thermodyn. 19, 863–890 (1987)

    Article  CAS  Google Scholar 

  46. Greenberg, J.P., Møller, N.: The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta 53, 2503–2518 (1989)

    Article  CAS  Google Scholar 

  47. Qafoku, O., Felmy, A.R.: Development of accurate chemical equilibrium models for oxalate species to high ionic strength in the system: Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O at 25 °C. J. Solution Chem. 36, 81–95 (2006)

    Article  CAS  Google Scholar 

  48. Martell, A.E., Smith, R.M.: NIST Critically Selected Stability Constants of Metal Complexes. NIST Standard Reference Database 46, Version 7.0 (2003)

  49. Felmy, A.R., Rai, D.: Application of Pitzer’s equations for modeling the aqueous thermodynamics of actinide species in natural waters: A review. J. Solution Chem. 28, 533–553 (1999)

    Article  CAS  Google Scholar 

  50. Prapaipong, P., Shock, E.L., Koretsky, C.M.: Metal-organic complexes in geochemical processes: Temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochim. Cosmochim. Acta 63, 2457–2577 (1999)

    Article  Google Scholar 

  51. Pitzer, K.S., Silvester, L.F.: Thermodynamics of electrolytes. 11. Properties of 3:2, 4:2, and other high-valence types. J. Phys. Chem. 82, 1239–1242 (1978)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Boily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boily, JF., Qafoku, O. & Felmy, A.R. A Potentiometric, Spectrophotometric and Pitzer Ion-Interaction Study of Reaction Equilibria in the Aqueous H+-Al3+, H+-Oxalate and H+-Al3+-Oxalate Systems up to 5 mol⋅dm−3 NaCl. J Solution Chem 36, 1727–1743 (2007). https://doi.org/10.1007/s10953-007-9203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9203-9

Keywords

Navigation