Skip to main content
Log in

Physical Properties and Diffusion-Coefficient Calculation of Iron Diffused Bi-2223 System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This study includes two parts: (I) investigation of the effect of different annealing time (10 h, 30 h, and 60 h) on physical, superconducting, and microstructural properties of Fe-diffused Bi-2223 superconductor ceramics prepared by the conventional solid-state reaction method with the aid of the X-ray diffraction (XRD), scanning electron microscopy (SEM), dc resistivity (ρT) and transport critical current density (J c ) measurements, and (II) determination of the diffusion coefficient and the activation energy of iron in the Bi-2223 system. In the former part, the zero-resistivity transition temperature (T c ), phase purity, volume fraction, hole-carrier concentration, lattice parameters, surface morphology, texturing, crystallinity, grain connectivity, grain size, and room temperature resistivity values of the bulk samples are found and compared with each other. The results obtained show that both the zero resistivity transition temperature (T c ) and transport critical current density (J c ) regularly enhance with the increment in the diffusion-annealing time. The maximum T c of 107±0.2 K and J c of 50.0 A cm−2 are observed for the sample annealed at 830 °C for 60 h. As for the XRD investigations, according to the refinement of cell parameters done by considering the structural modulation, the enhancement in the diffusion-annealing is confirmed by both a decrease of the cell parameter a and an increase of the lattice parameter c of the samples, meaning that the greatest Bi-2223 phase fraction belongs to the sample annealed at 830 °C for 60 h. Moreover, SEM images display that the sample has the best crystallinity, grain connectivity, and largest grain size. Based on the results, the superconducting and microstructural properties improve with the increase in the diffusion-annealing time. In the latter part, Fe diffusion in the Bi-2223 system is examined in a range of 500–830 °C by the variation of the lattice parameters evaluated from the XRD patterns. The temperature dependence of the Fe diffusion coefficient is described by the Arrhenius relation D=4.27×10−5exp(−1.27±0.10) eV/kBT, and the related activation energy of the iron in the Bi-2223 system is found to be about 1.27 eV. The relatively low value of activation energy obtained illustrates that the migration of the Fe ions primarily proceeds through defects such as pore surfaces and grain boundaries in the polycrystalline structure, leading to the improvement of the microstructural and superconducting properties of the samples, supported by the results of part I. All in all, the aim of the present study is not only to analyze the role of diffusion-annealing time on superconducting and microstructural properties of Fe-diffused Bi-2223 superconductors, but also to find the diffusion coefficient and activation energy of Fe in the Bi-2223 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, Y., Kavıraj, S., Berenov, A., Perkıns, G.K., Drıscoll, J., Caplın, A.D., Cao, G.H., Ma, Q.Z., Wang, B., Wei, L., Zhao, Z.X.: Physica C 355, 51 (2001)

    Article  ADS  Google Scholar 

  2. Dzhafarow, T.D., Altunbaş, M., Küçükömeroğlu, T., Nezir, S.: Solid State Commun. 99, 839 (1996)

    Article  ADS  Google Scholar 

  3. Terzioglu, C., Yilmazlar, M., Ozturk, O., Yanmaz, E.: Physica C 423, 119 (2005)

    Article  ADS  Google Scholar 

  4. Dzhafarow, T.D., Cömert, H., Altunbaş, M., Alver, U., Küçükömeroğlu, T., Kopya, A.: J. Alloys Compd. 221, 264 (1995)

    Article  Google Scholar 

  5. Kishore, K.N., Muralidhar, M., Babu, V.H.: Physica C 204, 299 (1993)

    Article  ADS  Google Scholar 

  6. Dzhafarow, T.D., Yilmazlar, M.: Physica C 292, 140 (1997)

    Article  ADS  Google Scholar 

  7. Ilyushechkin, A.Y., Yamashita, T., Boskovic, L., Mackinnon, I.D.R.: Supercond. Sci. Technol. 17, 1201 (2004)

    Article  ADS  Google Scholar 

  8. Biju, A., Aloysius, P., Sayamaprasad, U.: Sci. Technol. 18, 1854 (2005)

    Google Scholar 

  9. Prabıtha, V.G., Biju, A., Abhılashkumar, R.G., Sarun, P.M., Aloysıus, R.P., Syamaprasad, U.: Physica C 433, 28 (2005)

    Article  ADS  Google Scholar 

  10. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. A 27(2), L209 (1988)

    Article  ADS  Google Scholar 

  11. Gao, L., Huang, J.Z., Meng, L.R., Hor, H.P., Bechtold, J., Sun, Y.Y., Chu, W.C., Chen, Z.Z., Herman, M.A.: Bulk Nature 332, 623 (1998)

    Article  ADS  Google Scholar 

  12. Chu, W.C., Bechtold, J., Gao, L., Hor, H.P., Huang, J.Z., Meng, L.R., Sun, Y.Y., Wang, Y.Q., Zue, Y.Y.: Phys. Rev. Lett. 60, 941 (1988)

    Article  ADS  Google Scholar 

  13. Tallon, L.J., Buckley, G.R., Gilbert, W.P., Presland, R.M., Brown, M.W.I., Bowder, E.M., Christan, A.L., Gafull, R.: Nature 333, 153 (1988)

    Article  ADS  Google Scholar 

  14. Abbasi, H., Taghipour, J., Sedghi, H.: J. Alloys Compd. 482, 552–555 (2009)

    Article  Google Scholar 

  15. Sarun, P.M., Vinu, S., Shabna, R., Biju, A., Syamaprasad, U.: Mater. Res. Bull. 44, 1017 (2009)

    Article  Google Scholar 

  16. Yildirim, G., Bal, S., Varilci, A.: J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1496-2

    Google Scholar 

  17. Yildirim, G., Bal, S., Varilci, A.: J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1497-1

    Google Scholar 

  18. Ozturk, O., Cetinkara, H.A., Asikuzun, E., Akdogan, M., Yilmazlar, M., Terzioglu, C.: J. Mater. Sci., Mater. Electron. 22, 1501–1508 (2011)

    Article  Google Scholar 

  19. Ozturk, O.: J. Mater. Sci., Mater. Electron. (2011). doi:10.1007/s10854-011-0580-x

    Google Scholar 

  20. Dzhafarov, T.D.: Phys. Status Solidi A 158, 335 (1996)

    Article  ADS  Google Scholar 

  21. Yilmazlar, M., Ozturk, O., Gorur, O., Belenli, I., Terzioglu, C.: Supercond. Sci. Technol. 20, 365 (2007)

    Article  ADS  Google Scholar 

  22. Ozturk, O., Terzioglu, C., Belenli, I.: J. Supercond. Nov. Magn. 24, 381–390 (2011)

    Article  Google Scholar 

  23. Ozturk, O., Kucukomeroglu, T., Terzioglu, C.: J. Condens. Matter 19, 346205 (2007)

    Article  Google Scholar 

  24. Yildirim, G., Akdogan, M., Altintas, S.P., Erdem, M., Terzioglu Varilci A, C.: Terzioglu Varilci A, C.: Physica B 406, 1853–1857 (2011)

    Article  ADS  Google Scholar 

  25. Chiu, C.W., Meng, R.L., Gao, L., Huang, Z.J., Chen, F., Xue, Y.Y.: Nature 365, 323 (1993)

    Article  ADS  Google Scholar 

  26. Halim, S.A., Khawaldeh, S.A., Mohammed, S.B., Azhan, H.: Mater. Chem. Phys. 61, 251 (1999)

    Article  Google Scholar 

  27. Abdullaev, G.B., Dzhafarov, T.D.: Atomic Diffusion in Semiconductor Structures. Harwood, New York (1987)

    Google Scholar 

  28. Vinu, S., Sarun, P.M., Biju, A., Shabna, R., Guruswamy, P., Syamaprasad, U.: Supercond. Sci. Technol. 21, 045001 (2008)

    Article  ADS  Google Scholar 

  29. Sarun, P.M., Vinu, S., Shabna, R., Biju, A., Syamaprasad, U.: J. Alloys Compd. 472, 13 (2009)

    Article  Google Scholar 

  30. Vinu, S., Sarun, P.M., Shabna, R., Biju, A., Syamaprasad, U.: Mater. Lett. 62, 4421 (2008)

    Article  Google Scholar 

  31. Shabna, R., Sarun, P.M., Vinu, S., Biju, A., Syamaprasad, U.: J. Alloys Compd. 493, 11 (2010)

    Article  Google Scholar 

  32. Sarun, P.M., Vinu, S., Shabna, R., Biju, A., Syamaprasad, U.: Mater. Lett. 62, 2725 (2008)

    Article  Google Scholar 

  33. Biju, A., Sarun, P.M., Aloysius, R.P., Syamaprasad, U.: J. Alloys Compd. 454, 46 (2008)

    Article  Google Scholar 

  34. Sarun, P.M., Vinu, S., Shabna, R., Biju, A., Syamaprasad, U.: Mater. Res. Bull. 44, 1017 (2009)

    Article  Google Scholar 

  35. Khalil, S.M.: J. Phys. Chem. Solids 62, 457–466 (2001)

    Article  ADS  Google Scholar 

  36. Kameli, P., Salamati, H., Eslami, M.: Solid State Commun. 137, 30–35 (2006)

    Article  ADS  Google Scholar 

  37. Yildirim, G., Yucel, E., Bal, S., Dogruer, M., Varilci, A., Akdogan, M., Terzioglu, C., Zalaoglu, Y.: J. Supercond. Nov. Magn. 25, 231–237 (2012)

    Article  Google Scholar 

  38. Yildirim, G., Bal, S., Yucel, E., Dogruer, M., Akdogan, M., Varilci, A., Terzioglu, C.: J. Supercond. Nov. Magn. 25, 381–390 (2012)

    Article  Google Scholar 

  39. Nursoy, M., Yilmazlar, M., Terzioglu, C., Belenli, I.: J. Alloys Compd. 4591–4592, 399 (2008)

    Article  Google Scholar 

  40. Ling, H.C., Yan, M.F.: J. Appl. Phys. 64, 1307 (1988)

    Article  ADS  Google Scholar 

  41. Ozturk, O., Yegen, D., Yilmazlar, M., Varilci, A., Terzioglu, C.: Physica C 451, 113–117 (2007)

    Article  ADS  Google Scholar 

  42. Persland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  43. Dzhafarov, T.D., Altunbaş, M., Varilci, A., Küçükömeroğlu, T.: Mater. Lett. 25, 81 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Asikuzun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, O., Asikuzun, E., Kaya, S. et al. Physical Properties and Diffusion-Coefficient Calculation of Iron Diffused Bi-2223 System. J Supercond Nov Magn 25, 2481–2487 (2012). https://doi.org/10.1007/s10948-012-1673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1673-3

Keywords

Navigation