Skip to main content

Advertisement

Log in

Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The thermal-resistance Al2O3 aerogels and Al2O3 aerogel-SiO2 fiber composite by using inorganic aluminum salt as the precursor were synthesized by the sol–gel process. The method was straightforward, inexpensive, and safe. Furthermore, it was found that the as-prepared Al2O3 aerogel had high crystal phase transition temperature. As the heat treatment temperature increased to 900 °C, the crystal phase transition from γ-AlOOH to γ-Al2O3 occurred within the Al2O3 aerogel. Meanwhile, the Al2O3 aerogel-SiO2 fiber composite exhibited high Young’s modulus of tensile strength up to 6.59 MPa and low thermal conductivity at 35 °C (0.028 W/(m K)) and high temperature of 600 °C (0.033 W/(m K)). In addition, the results indicated that the Al2O3 aerogel-SiO2 fiber composite had the moderate hydrophobic property as well as mechanical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Sorensen, G.F. Strouse, A.E.J.AM. Stiegman, Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots. Adv. Mater. 18, 1965–1967 (2010)

    Article  CAS  Google Scholar 

  2. S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R.V.R. Virtudazo, P. Tingaut, M.M. Koebel, Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25, 2326–2334 (2015)

    Article  CAS  Google Scholar 

  3. L. Li, B. Yalcin, B.N. Nguyen, M.A. Meador, Cakmak and interfaces, flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS App. Mater. Interfaces 1, 2491 (2009)

    Article  CAS  Google Scholar 

  4. J.H Robinson, Orbital debris impact damage to reusable launch vehicles. Int. J. Impact Eng 23, 783–794 (1998)

    Article  Google Scholar 

  5. R.G. Martinez, E. Goiti, G. Reichenauer, S. Zhao, M. Koebel, Barrio and buildings, thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy Buildings 128, 111–118 (2016)

    Article  Google Scholar 

  6. H. Yamashita, T. Ogami, K. Kanamura, Hydrothermal synthesis of hollow Al2O3 microfibers for thermal insulation materials. Bull. Chem. Soc. Jpn. 91, 741–746 (2018)

    Article  CAS  Google Scholar 

  7. G. Wang, J. Zhao, H.M. Lun, G. Wang, K. Yu, C. Wang, C.B. Park, G.J. Zhao, Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chem. Eng. J. 325, 632–646 (2017)

    Article  CAS  Google Scholar 

  8. A.M. Abraham, S.V. Kumar, S.M. Alhassan, A.M. Abraham, S.V. Kumar, S.M. Alhassan, Porous sulphur copolymer for gas-phase mercury removal and thermal insulation. Chem. Eng. J. 332, 1–7 (2018)

    Article  CAS  Google Scholar 

  9. B. Wang, Y.R. Wang, Effect of fiber diameter on thermal conductivity of the electrospun carbon nanofiber mats. Adv. Mater. Res. 332–334, 672–677 (2011)

    Google Scholar 

  10. A.R. Bunsell, M.H. Berger, Fine diameter ceramic fibres. J. Eur. Ceram. Soc. 20, 2249–2260 (2000)

    Article  CAS  Google Scholar 

  11. C. Simón-Herrero, A. Romero, J.L. Valverde, L.J.J. Sánchez-Silva, Hydroxyethyl cellulose/alumina-based aerogels as lightweight insulating materials with high mechanical strength. J. Mater. Sci. 53, 1556–1567 (2018)

    Article  CAS  Google Scholar 

  12. Q.F. Xu, H.B. Ren, J.Y. Zhu et al., Facile fabrication of graphite-doped silica aerogels with ultralow thermal conductivity by precise control. J. Non-Cryst. Solids 469, 14–18 (2017)

    Article  CAS  Google Scholar 

  13. X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Thermal conductivity of monolithic organic aerogels. Science 255, 971–972 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. T.Y. Wei, T.F. Chang, S.Y. Lu, A.C.S. Chang, Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J. Am. Ceram. Soc. 90, 2003–2007 (2010)

    Article  CAS  Google Scholar 

  15. L.J. Wang, S.Y. Zhao, M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113, 485–490 (2009)

    Article  CAS  Google Scholar 

  16. L. Hrubesh, Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)

    Article  CAS  Google Scholar 

  17. S. Keshipour, M.J.C. Khezerloo, Au-dimercaprol functionalized cellulose aerogel: synthesis, characterization and catalytic application: Heterogeneous biocatalysis. Appl. Organomet. Chem. 32, e4255 (2018)

    Article  CAS  Google Scholar 

  18. Y. Fu, G. Wang, X. Ming, X. Liu, B. Hou, T. Mei, J. Li, J. Wang, X.J.C. Wang, Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon 130, 250–256 (2018)

    Article  CAS  Google Scholar 

  19. N. Nazeran, S. J.J.J.o.N.-C, Moghaddas, Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application. J. Non-Cryst. Solids 461, 1–11 (2017)

    Article  CAS  Google Scholar 

  20. F. Cao, L. Ren, X.J. Li, Synthesis of high strength monolithic alumina aerogels at ambient pressure. Res. Adv. 5, 18025–18028 (2015)

    CAS  Google Scholar 

  21. A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 34, 4243–4265 (2002)

    Article  CAS  Google Scholar 

  22. J.P. Randall, M.A.B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications. ACS App. Mater. Int. 3, 613–626 (2011)

    Article  CAS  Google Scholar 

  23. S.S. Prakash, C.J. Brinker A.J.J. Hurd, Silica aerogel films at ambient pressure. J. Non-Cryst. Solids 190, 264–275 (1995)

    Article  CAS  Google Scholar 

  24. F. Shi, L. Wang, J. Liu, Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60, 3718–3722 (2006)

    Article  CAS  Google Scholar 

  25. N. Hüsing, U.J.A.C.I.E. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)

    Article  Google Scholar 

  26. X. Du, F. Kleitz, X. Li, H. Huang, X. Zhang, S.Z.J.A.FM. Qiao, Disulfide-bridged organosilica frameworks: designed, synthesis, redox-triggered biodegradation, and nanobiomedical applications. Adv. Funct. Mater. 28, 1707325 (2018)

    Article  CAS  Google Scholar 

  27. X. Du, X. Li, L. Xiong et al., Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91, 90–127 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. S. Komarneni, R. Roy, U. Selvaraj, P.B. Malla, Research, nanocomposite aerogels: the SiO2–Al2O3 system. J. Mater. Res. 8, 3163–3167 (1993)

    Article  CAS  Google Scholar 

  29. M. Li, H. Jiang, D. Xu et al., Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. J. Non-Cryst. Solids 452, 187–193 (2016)

    Article  CAS  Google Scholar 

  30. X. Ji, Q. Zhou, G. Qiu, B. Peng, M. Guo, M.J.S. Zhang, Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying. J. Non-Cryst. Solids 471, 160–168 (2017)

    Article  CAS  Google Scholar 

  31. J.F. Poco, N.-C.S. Hrubesh, Synthesis of high porosity, monolithic alumina aerogels. J. Non-Cryst. Solids 285, 57–63 (2001)

    Article  CAS  Google Scholar 

  32. T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, J.H.S. Satcher, Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem. Mater. 17, 395–401 (2005)

    Article  CAS  Google Scholar 

  33. S. Zhang, W. Cai, J. Yu et al., A facile one-pot cation-anion double hydrolysis approach to the synthesis of supported MgO/γ-Al2O3 with enhanced adsorption performance towards CO2. Chem. Eng. J. 310, 216–225 (2017)

    Article  CAS  Google Scholar 

  34. G. Zu, J. Shen, X. Wei, X. Ni, Z. Zhang, J. Wang, Preparation and characterization of monolithic alumina aerogels. J. Non-Cryst. Solids 357, 2903–2906 (2011)

    Article  CAS  Google Scholar 

  35. L. Xu, Y. Jiang, J. Feng et al., Infrared-opacified Al2O3–SiO2, aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram. Int. 41, 437–442 (2015)

    Article  CAS  Google Scholar 

  36. R. Zhang, N. Jiang, X.J. Duan et al., Synthesis and characterization of Al2O3–SiO2 hybrid aerogels by a one-pot sol–gel method. New Carb. Mater. 32, 258–264 (2017)

    Article  Google Scholar 

  37. X. Wu, G. Shao, S. Cui, L. Wang, X.J.C.I. Shen, Synthesis of a novel Al2O3–SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram. Int. 42, 874–882 (2016)

    Article  CAS  Google Scholar 

  38. R. Zhang, C. Ye, B. Wang, Novel Al2O3-SiO2, aerogel/porous zirconia composite with ultra-low thermal conductivity. J. Porous Mater. 25, 171–178 (2018)

    Article  CAS  Google Scholar 

  39. G. Zu, J. Shen, L. Zou, W. Wang, Y. Lian, Z. Zhang, Nanoengineering super heat-resistant, strong alumina aerogels. Chem. Mater. 25, 4757–4764 (2013)

    Article  CAS  Google Scholar 

  40. J.T. Zhang, J.W. Jiang, C.C. Zhao, Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)

    Article  CAS  Google Scholar 

  41. M.M. Liu, J.C. Liu, M.C. Wang, Z.Q.J. Yun, Preparation and properties of SiO2/Al2O3–SiO2 fiber mat composite materials. Key Eng. Mater. 680, 129–132 (2016)

  42. J. Liu, H. Xu, W. Shen, X. Pan, Y.J.J.T.A. Xiang. Calorimetry, TG study of the dispersion threshold of Mn2O3 on γ-Al2O3. J. Therm. Anal. Calorim. 58, 309–315 (1999)

    Article  CAS  Google Scholar 

  43. Y.M. Kim, G.H. Rhee, C.H. Ko, K.H. Kim, K.Y. Jung, J.M. Kim. Park and nanotechnology, catalytic pyrolysis of Pinus densiflora over mesoporous Al2O3 catalysts. J. Nanosci. Nanotechol. 18, 6300–6303 (2018)

    Article  CAS  Google Scholar 

  44. C. Wu, W. Yuan, Y. Huang, Y. Xia, H. Yang, H. Wang, X.J.C.L. Liu, Conversion of xylose into furfural catalyzed by bifunctional acidic ionic liquid immobilized on the surface of magnetic γ-Al. Catal. Lett. 147, 953–963 (2017)

    Article  CAS  Google Scholar 

  45. X. Wang, J. Wang, H.J.J.o.MP. Wang, A heat-resistant organic adhesive for joining Al2O3 ceramics in air and argon atmospheres. J. Manuf. Process. 26, 67–73 (2017)

    Article  Google Scholar 

  46. H.B. Zhao, M. Chen, H.B. Chen, Thermally insulating and flame-retardant polyaniline/pectin aerogels. ACS Sustainable Chem. Eng. 5, 7012–7019 (2017)

    Article  CAS  Google Scholar 

  47. M. Yao, N. Wang, W. Hu et al., Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2, nanosheets for high performance oxygen evolution reaction. Appl. Catal. B. 233, 226–233 (2018)

    Article  CAS  Google Scholar 

  48. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S.J.C.E.J. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018)

    Article  CAS  Google Scholar 

  49. N. Wang, H.D. Song, H.B. Ren, J.Y. Chen, M.Q. Yao, W.Y. Huang, W.C. Hu, Komarneni partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chem. Eng. J. 358, 531–539 (2019)

    Article  CAS  Google Scholar 

  50. H. Chen, X.Y. Sui, C.L. Zhou et al., Preparation and characterization of mullite fiber-reinforced Al2O3–SiO2 aerogel composites. Key Eng. Mater. 697, 360–363 (2016)

Download references

Acknowledgements

This research was financially supported by Sichuan Science and Technology Program (No. 2018RZ0127), the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Nos. 17FKSY0111 and 18zxhk16) and the Doctoral Research Fund of Southwest University of Science and Technology (No. 16zx7142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Ren or Lin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 540 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Ren, H., Zhu, J. et al. Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. J Porous Mater 26, 1027–1034 (2019). https://doi.org/10.1007/s10934-018-0700-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0700-6

Keywords

Navigation