Skip to main content

Advertisement

Log in

Carbohydrate Biolubricants from Algae and Cyanobacteria

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lubricants are used to prevent friction that causes resistance and heating up in oil drilling; ocular and orthopaedic implant materials; with Metal Working Fluids (MWF) and in general anti-wears. Conventional lubricants are either non-renewable petroleum-based or environmentally unfriendly synthetic materials, while biolubricants are renewable and eco-friendly of ‘biological origin’. Biolubricants are derived from either lipids/oils or carbohydrates obtained from living sources like animals (Chitosan, Hyaluronic acid), plants (Gum arabic, Guar gum), algae/cyanobacteria (oil, polysaccharide) and other microorganisms like bacteria (Gellan, Xanthan gum, Dextran, Lichenysin, Surfactin), yeast (single cell oil), filamentous fungi (esters). Lipids/Oils have varied uses in energy (biodiesel), food and other sectors, and are therefore in high demand, while extracellular polysaccharides (EPS) are of limited use at present. Biolubricants from animals have limitations. Similarly, the use of higher plants also has limitations as they require large arable land; only a part of their biomass, not the entire plant useful, and have long-life cycles compared to microorganisms. However, microorganisms like bacteria need specialized equipment and techniques to cultivate, increasing production costs. But, Algae and Cyanobacteria are photoautotrophs with minimal growth requirements and easy to cultivate. The viscous algal/cyanobacterial polysaccharides have remarkable rheological properties useful in reducing friction. Among algae, the seaweed products like agar, carrageenan and alginic acids are shown to provide lubrication, but they are needed more for other uses, and the macroalgae cultivation has its own limitations. Instead, Microalgae and Cyanobacteria pose relatively less problems and produce polysaccharides with remarkable rheological properties and physico-chemical characteristics, fit for lubrication. They can be cultivated round the year, some with seawater or even with wastewater or effluents (resulting also in bioremediation), reducing the cost of biomass production. This review highlights the emerging importance of carbohydrates especially the extracellular polysaccharides (EPS) of Algae and Cyanobacteria with commercial potential as Carbohydrate biolubricants. In addition, algal/cyanobacterial biomass production, together with optimizations required to maximize polysaccharides have been reviewed and the physicochemical properties including molecular weight, crystallinity, thermal characteristic and rheology of polysaccharides useful as biolubricants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen Y, Jha S, Raut A et al (2020) Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front Mech Eng 6:571464

    Article  Google Scholar 

  2. Gschwender LJ, Kramer DC, Lok BK et al (2001). In: Bhushan B (ed) Modern Tribology Handbook. CRC Press, Boca Raton

    Google Scholar 

  3. Marinescu ID, Rowe WB, Dimitrov B et al (2004) Tribology of Abrasive Machining Processes, 2nd edn. Elsevier

  4. Stout SA, Wang Z (2016) Standard Handbook Oil Spill Environmental Forensics Fingerprinting and Source Identification, 2nd edn. Elsevier

  5. Pirow R, Blume A, Hellwig N et al (2020) Mineral oil in food, cosmetic products, and in products regulated by other legislations. Crit Rev Toxicol 49:742–789

    Article  CAS  Google Scholar 

  6. Minami I (2017) Molecular Science of Lubricant Additives. Appl Sci 7:445

    Article  CAS  Google Scholar 

  7. Hartwig A (2017) White mineral oil, pharmaceutical [MAK Value Documentation, 2015]. The MAK-Collection for Occupational Health and Safety 2:1177–1191

    Article  Google Scholar 

  8. Nowak P, Kucharska K, Kamiński M (2019) Ecological and Health Effects of Lubricant Oils Emitted into the Environment. Int J Environ Res Public Health 16:3002

    Article  CAS  PubMed Central  Google Scholar 

  9. Cecutti C, Agius D (2008) Ecotoxicity and biodegradability in soil and aqueous media of lubricants used in forestry applications. Bioresour Technol 99:8492–8496

    Article  CAS  PubMed  Google Scholar 

  10. Zainal NA, Zulkifli NWM, Gulzar M et al (2018) A review on the chemistry, production, and technological potential of bio-based lubricants. Renewable Sustainable Energy Rev 82:80–102

    Article  CAS  Google Scholar 

  11. Bolina ICA, Gomes RAB, Mendes AA (2021) Biolubricant Production from Several Oleaginous Feedstocks Using Lipases as Catalysts: Current Scenario and Future Perspectives. Bioenerg Res. https://doi.org/10.1007/s12155-020-10242-4

    Article  Google Scholar 

  12. Encinar JM, Nogales-Delgado S, Sánchez N et al (2020) Biolubricants from Rapeseed and Castor Oil Transesterification by Using Titanium Isopropoxide as a Catalyst: Production and Characterization. Catalysts 10:366

    Article  CAS  Google Scholar 

  13. Bandhu S, Khot MB, Sharma T et al (2018) Single Cell Oil from Oleaginous Yeast Grown on Sugarcane Bagasse- Derived Xylose: An Approach toward Novel Biolubricant for Low Friction and Wear. ACS Sustain Chem Eng 6:275–283

    Article  CAS  Google Scholar 

  14. Papadaki A, Fernandes KV, Chatzifragkou A et al (2018) Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry waste. Bioresour Technol 267:311–318

    Article  CAS  PubMed  Google Scholar 

  15. Tsakraklides V, Kamineni A, Consiglio AL et al (2018) High-oleate yeast oil without polyunsaturated fatty acids. Biotechnol Biofuels 11:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kozubal M, Macur R, Avniel Y (2017) Filamentous Fungal Biomats, Methods of their production and methods of their use. World Intellectual Property Organization (WO) Patent 2017/151684 Al.

  17. Rani S, Joy ML, Nair KP (2015) Evaluation of physiochemical and tribological properties of rice bran oil – biodegradable and potential base stoke for industrial lubricants. Ind Crops Prod 65:328–333

    Article  CAS  Google Scholar 

  18. Babu KJ, Kynadi AS, Joy ML et al (2018) Enhancement of cold flow property of coconut oil by alkali esterification process and development of a bio-lubricant oil. P I Mech Eng J-J Eng 232:1–8

    Google Scholar 

  19. Ghosh P, Karmakar G (2014) Evaluation of sunflower oil as a multifunctional lubricating oil additive. Int J Ind Chem 5:7

    Article  Google Scholar 

  20. Padmanabana V, Anbuudayasankarb SP, Ashokkumar A (2013) Development of Bio based Semi-Synthetic Metal Working Fluid from Industrial Waste Water. Procedia Eng 64:1436–1444

    Article  CAS  Google Scholar 

  21. Mirzaie MAM, Kalbasi M, Mousavi SM (2016) Statistical Evaluation and Modeling of Cheap Substrate-Based Cultivation Medium of Chlorella vulgaris to Enhance Microalgae Lipid as New Potential Feedstock for Biolubricant. Prep Biochem Biotechnol 46:368–375

    Article  CAS  Google Scholar 

  22. Cheah MY, Ong HC, Zulkifli NWM et al (2020) Physicochemical and tribological properties of microalgae oil as biolubricant for hydrogen powered engine. Int J Hydrog Energy 45:22364–22381

    Article  CAS  Google Scholar 

  23. Murmu M, Sengupta S, Pal R et al (2020) Efficient tribological properties of azomethine-functionalized chitosan as a bio-lubricant additive in paraffin oil: experimental and theoretical analysis. RSC Adv 10:33401–33416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganesan M, Trivedi N, Gupta V et al (2019) Seaweed resources in India—current status of diversity and cultivation: prospects and challenges. Bot Mar. 62:463–482

    Article  Google Scholar 

  25. Prasad K, Goswami AM, Meena R et al (2006) Superior quality agar from red alga Gelidiella acerosa (Rhodophyta, Gelidiales) from Gujarat coast of India: An evaluation. Indian J Mar Sci 35:268–274

    Google Scholar 

  26. Shao P, Qin M, Han L et al (2014) Rheology and characteristics of sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata. Carbohydr Polym 113:365–372

    Article  CAS  PubMed  Google Scholar 

  27. Qiao L, Li Y, Chi Y et al (2016) Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera. Carbohydr Polym 136:1307–1314

    Article  CAS  PubMed  Google Scholar 

  28. de Castro JPL, Costa LEC, Pinheiro MP et al (2018) Polysaccharides of red alga Gracilaria intermedia: structure, antioxidant activity and rheological behavior. Polímeros 28:178–186

    Article  Google Scholar 

  29. Campbell I, Macleod A, Sahlmann C et al (2019) The Environmental Risks Associated with the Development of Seaweed Farming in Europe – Prioritizing Key Knowledge Gaps. Front Mar Sci 6:107

    Article  Google Scholar 

  30. Roleda MY, Hurd CL (2019) Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia 58:552–562

    Article  CAS  Google Scholar 

  31. Yanuar G, Waskito KT et al (2017) Effect of Agar Jelly Coating in Rectangular Pipe to Flow Drag Reduction. J Appl Fluid Mech 10:1161–1166

    Article  Google Scholar 

  32. Madruga LYC, da Câmara PCF, Marques N et al (2018) Effect of ionic strength on solution and drilling fluid properties of ionic polysaccharides: A comparative study between Na-carboxymethylcellulose and Na-kappa-carrageenan responses. J Mol Liq 266:870–879

    Article  CAS  Google Scholar 

  33. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  CAS  PubMed  Google Scholar 

  34. Wang C, He G, Cao J et al (2020) Underwater Superoleophobic and Salt-Tolerant Sodium Alginate/N-Succinyl Chitosan Composite Aerogel for Highly Efficient Oil-Water Separation. ACS App Polym Mater 2(3):1124–1133

    Article  CAS  Google Scholar 

  35. Fanta GF, Muijs HM, Eskins K et al (2002) Starch containing lubricant systems for oil field applications. United States patent US 6461999B1.

  36. Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae-Novel Highly Efficient Starch Producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  CAS  Google Scholar 

  37. Laurens LM, Dempster TA, Jones HD et al (2012) Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of The Underlying Measuring Chemistries. Anal Chem 84:1879–1887

    Article  CAS  PubMed  Google Scholar 

  38. Lahaye M, Robic A (2007) Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromol 8:1765–1774

    Article  CAS  Google Scholar 

  39. Chen L, Wang Y, Yang H et al (2018) Physicochemical Characterization, Antioxidant and Immunostimulatory Activities of Sulfated Polysaccharides Extracted from Ascophyllum nodosum. Molecules 23:1912

    Article  PubMed Central  Google Scholar 

  40. McCracken DA, Cain JR (1981) Amylose in Floridean Starch. New Phytol 88:67–71

    Article  CAS  Google Scholar 

  41. Ball S, Colleoni C, Cenci U et al (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801

    Article  CAS  PubMed  Google Scholar 

  42. Thajuddin N (1991) Marine cyanobacteria flora of southern east coast of India-Survey and Ecobiological studies. Ph.D. Thesis. Bharathidasan University, Tiruchirappalli-India.

  43. Thajuddin N, Subramanian G (2002) In Sahoo D. Pandey PC Advances in Marine and Antarctic Sciences. APH Publishing Co., New Delhi, India

    Google Scholar 

  44. Borah D, Subramanian G, Thajuddin N (2018) In:Noor MN, Bhatnagar SK, Sinha SK (ed) Bioprospecting of Algae. Society for plant Research, India.

  45. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  46. Baldev E, Mubarakali D, Saravanakumar K, Arutselvan C, Alharbi NS, Alharbi SA, Sivasubramanian V, Thajuddin N (2018) Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. J Renew Energy 123:486–498

    Article  CAS  Google Scholar 

  47. Borah D, Nainamalai S, Subramanian G et al (2018) Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica. Appl Microbiol Biotechnol 102:3635–3647

    Article  CAS  PubMed  Google Scholar 

  48. Raposo MFJ, de Morais RMSC, Maria A et al (2013) Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar Drugs 11:233–252

    Article  PubMed  Google Scholar 

  49. Paniagua-Michel JdJ, Olmos-Soto J, Morales-Guerrero ER (2014) Algal and Microbial Exopolysaccharides: New Insights as Biosurfactants and Bioemulsifiers. Adv Food Nutr Res 73:221–257

    Article  CAS  Google Scholar 

  50. Stokes JR, Macakova L, Chojnicka-Paszun A et al (2011) Lubrication, Adsorption, and Rheology of Aqueous Polysaccharide Solutions. Langmuir 27:3474–3484

    Article  CAS  PubMed  Google Scholar 

  51. Park T, Jeon MK, Yoon S (2019) Modification of Interfacial Tension and Wettability in Oil−Brine− Quartz System by in Situ Bacterial Biosurfactant Production at Reservoir Conditions: Implications for Microbial Enhanced Oil Recovery. Energy Fuels 33:4909–4920

    Article  CAS  Google Scholar 

  52. Shi Y, Sheng J, Yang F et al (2007) Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chem 103:101–105

    Article  CAS  Google Scholar 

  53. Gasljevic K, Hall K, Chapman D et al (2008) Drag-reducing polysaccharides from marine microalgae: species productivity and drag reduction effectiveness. J Appl Phycol 20:299–310

    Article  CAS  Google Scholar 

  54. Aikawa S, Ho SH, Nakanishi A et al (2015) Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol J 10:886–898

    Article  CAS  PubMed  Google Scholar 

  55. Arad SM, Adda M, Cohen E (1985) The potential of production of sulfated polysaccharides from Porphyridium. Plant Soil 89:117–127

    Article  CAS  Google Scholar 

  56. Arad S, Atar D (2015) Viscosupplementation with algal polysaccharides in the treatment of arthritis. United States Patent US9119870B2.

  57. Yang Q, Li J, Xu H et al (2017) Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing. J Biomater Sci Polym Ed 28:459–469

    Article  CAS  PubMed  Google Scholar 

  58. Smyth TJ, Perfumo A, Marchant R et al (2010) Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Appl Microbiol Biotechnol 87:1347–1354

    Article  CAS  PubMed  Google Scholar 

  59. Fischer D, Schlösser U, Pohl P (1997) Exopolysaccharide production by cyanobacteria grown in closed photobioreactors and immobilized using white cotton towelling. J Appl Phycol 9:205–213

    Article  CAS  Google Scholar 

  60. Soanen N, DaSilva E, Gardarin C et al (2016) Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour Technol 213:231–238

    Article  CAS  PubMed  Google Scholar 

  61. Liu Q, Yao C, Sun Y et al (2019) Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. Biotechnol Biofuels 12:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kanekiyo K, Lee JB, Hayashi K et al (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68:1037–1041

    Article  CAS  PubMed  Google Scholar 

  63. Okajima MK, Miyazato S, Kaneko T (2009) Cyanobacterial Megamolecule Sacran Efficiently Forms LC Gels with Very Heavy Metal Ions. Langmuir 25:8526–8531

    Article  CAS  PubMed  Google Scholar 

  64. Mota R, Vidal R, Pandeirada C et al (2020) Cyanoflan: a cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydr Polym 229:115525

    Article  CAS  PubMed  Google Scholar 

  65. Fattom A, Shilo M (1985) Production of emulcyan by Phormidium J-1: its activity and function. FEMS Microbiol Lett 31:3–9

    Article  CAS  Google Scholar 

  66. Samuel CSJ, Shreenidhi KS (2017) Exopolysaccharides of Marine Cyanobacterium Nostoc Species as a Biosurfactant. Int J Innov Res Sci Eng Technol 6:477–483

    Google Scholar 

  67. Khattar JIS, Singh DP, Jindal N et al (2010) Isolation and Characterization of Exopolysaccharides Produced by the Cyanobacterium Limnothrix redekei PUPCCC 116. Appl Biochem Biotechnol 162:1327–1338

    Article  CAS  PubMed  Google Scholar 

  68. Mota R, Guimarães R, Büttel Z et al (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym 92:1408–1415

    Article  CAS  PubMed  Google Scholar 

  69. Han P, Sun Y, Wu X et al (2014) Emulsifying, Flocculating, and Physicochemical Properties of Exopolysaccharide Produced by Cyanobacterium Nostoc flagelliforme. Appl Biochem Biotechnol 172:36–49

    Article  CAS  PubMed  Google Scholar 

  70. Borah D, Rethinam G, Subramianian G et al (2020) Ozone enhanced production of potentially useful exopolymers from the cyanobacterium Nostoc muscorum. Polym Test 84:106385

    Article  CAS  Google Scholar 

  71. Monsur HA, Jaswir I, Simsek S et al (2017) Chemical structure of sulphated polysaccharides from brown seaweed (Turbinaria turbinata). Int J Food Prop 20:1457–1469

    Article  CAS  Google Scholar 

  72. Tiwari ON, Mondal A, Bhunia B et al (2019) Purification, characterization and biotechnological potential of new exopolysaccharide polymers produced by cyanobacterium Anabaena sp. CCC 745. Polymer 178:121695

    Article  CAS  Google Scholar 

  73. Copp EA, Glantz D (2012) Environmentally friendly kelp-based energy saving lubricants, biofuels, and other industrial products. United States Patent US8167959B2.

  74. Rosenberg E, Ron EZ (1997) Bioemulsans: Microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    Article  CAS  PubMed  Google Scholar 

  75. Janado M, Yano Y (1985) Hydrophobic nature of sugars as evidenced by their differential affinity for polystyrene gel in aqueous media. J Solution Chem 14:891–902

    Article  CAS  Google Scholar 

  76. Assaf SM, Khanfar MS, Farhan AB et al (2019) Preparation and Characterization of Co-processed Starch/ MCC/Chitin Hydrophilic Polymers onto Magnesium Silicate. Pharm Dev Technol 24:761–774

    Article  CAS  PubMed  Google Scholar 

  77. Nardi-Ricart A, Nofrerias-Roig I, Suñé-Pou M et al (2020) Formulation of Sustained Release Hydrophilic Matrix Tablets of Tolcapone with the Application of Sedem Diagram: Influence of Tolcapone’s Particle Size on Sustained Release. Pharmaceutics 12:674

    Article  CAS  PubMed Central  Google Scholar 

  78. Ijaola AO, Farayibi PK, Asmatulu E (2020) Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review. J Nat Gas Sci Eng 83:103544

    Article  CAS  Google Scholar 

  79. Hassan H, Ismail A, Ahmad S et al (2017) Superhydrophobic green corrosion inhibitor on carbon steel. IOP Conf Ser Mater Sci Eng 215:012023

    Article  Google Scholar 

  80. Shepherd R, Rockey J, Sutherland IW et al (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217

    Article  CAS  PubMed  Google Scholar 

  81. Hussein MH, Abou-ElWafa GH, Shaaban-Dessuuki SA et al (2015) Characterization and antioxidant activity of exopolysaccharide secreted by Nostoc carneum. Int J Pharm 11:432–439

    Article  CAS  Google Scholar 

  82. Can HK, Gurbuz F, Odabas M (2019) Partial characterization of cyanobacterial extracellular polymeric substances for aquatic ecosystems. Aquat Ecol 53:431–440

    Article  CAS  Google Scholar 

  83. Angelaalincy M, Senthilkumar N, Karpagam R et al (2017) Enhanced Extracellular Polysaccharide Production and Self Sustainable Electricity Generation for PAMFCs by Scenedesmus sp. SB1. ACS Omega 2:3754–3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng D, Bai B, Xu X et al (2019) Fabrication of detonation nanodiamond@sodium alginate hydrogel beads and their performance in sunlight-triggered water release. RSC Adv 9:27961–27972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jia S, Yu H, Lin Y et al (2007) Characterization of extracellular polysaccharides from Nostoc flagelliforme cells in liquid suspension culture. Biotechnol Bioprocess Eng 12:271–275

    Article  CAS  Google Scholar 

  86. Démuth B, Farkas A, Balogh A et al (2016) Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion. J Pharm Sci 105:2982–2988

    Article  PubMed  CAS  Google Scholar 

  87. Rowe CD, Lamothe K, Rempe M et al (2019) Earthquake lubrication and healing explained by amorphous nanosilica. Nat Commun 10:320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Yu H, Kim J, Lee C (2019) Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci Rep 9:6123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hawrot-Paw M, Koniuszy A, Gałczyn´ska M, et al (2020) Production of Microalgal Biomass Using Aquaculture Wastewater as Growth Medium. Water 12:106

    Article  CAS  Google Scholar 

  90. Brar A, Kumar M, Pareek N (2019) Comparative Appraisal of Biomass Production, Remediation, and Bioenergy Generation Potential of Microalgae in Dairy Wastewater. Front Microbiol 10:678

    Article  PubMed  PubMed Central  Google Scholar 

  91. Singh A, Ummalyma SB, Sahoo D (2020) Bioremediation and biomass production of microalgae cultivation in river water contaminated with pharmaceutical effluent. Bioresour Technol 307:123233

    Article  CAS  PubMed  Google Scholar 

  92. Borah D, Bervin K, Subramanian G et al (2020) Bioremediation and Biomass Production with the Green Microalga Chlorococcum humicola and Textile Mill Effluent (TE). Proc Natl Acad Sci India, Sect B Biol Sci 90:415–423

    Article  CAS  Google Scholar 

  93. Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  94. Baldev E, MubarakAli D, Ilavarasi A, Pandiaraj D, Sheik KA, Ishack S, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B 105:207–214

    Article  CAS  Google Scholar 

  95. Kalavathi DF, Uma L, Subramanian G (2001) Degradation and metabolization of the pigment—melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme Microb Technol 29:246–251

    Article  Google Scholar 

  96. Posadas E, Alcántara C, García-Encina PA et al (2017). In: Muñoz R, Gonzalez-Fernandez C (eds) Microalgae-Based Biofuels and Bioproducts. Elsevier, Amsterdam

    Google Scholar 

  97. Bilanovic D, Andargatchew A, Kroeger T et al (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–response surface methodology analysis. Energy Convers Manage 50:262–267

    Article  CAS  Google Scholar 

  98. Jindal N, Singh DP, Khattar JIS (2013) Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacterium Lyngbya stagnina. J Basic Microbiol 53:1–11

    Article  CAS  Google Scholar 

  99. Tiwari ON, Khangembam R, Shamjetshabam M (2015) Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions. Appl Biochem Biotechnol 176:1950–1963

    Article  CAS  PubMed  Google Scholar 

  100. Han P, Yao S, Guo R et al (2017) Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Nostoc flagelliforme. RSC Adv 7:45075–45084

    Article  CAS  Google Scholar 

  101. Hasan AMA, Abdel-Raouf ME (2018) Applications of guar gum and its derivatives in petroleum industry: A review. Egypt J Pet 27:1043–1050

    Article  Google Scholar 

  102. da Silva Grem IC, Lima BNB, Carneiro WF et al (2013) Chitosan microspheres applied for removal of oil from produced water in the oil industry. Polímeros 23:705–711

    Article  CAS  Google Scholar 

  103. Hamilton I, Norton I (2016) Modification to the lubrication properties of xanthan gum fluid gels as a result of sunflower oil and triglyceride stabilised water in oil emulsion addition. Food Hydrocoll 55:220–227

    Article  CAS  Google Scholar 

  104. Scholes SC, Colledge CJ, Naylor A et al (2016) Potential Synthetic Biolubricant as an Alternative to Bovine Serum. Lubricants 4:38

    Article  Google Scholar 

  105. Li MC, Wu Q, Song K et al (2016) Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Ind Eng Chem Res 55:133–143

    Article  CAS  Google Scholar 

  106. Núñez N, Martín-Alfonso JE, Valencia C et al (2012) Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Ind Crops Prod 37:500–507

    Article  CAS  Google Scholar 

  107. Redkar M, Srividya B, Ushasree P et al (2000) Dextran – HPMC eye drops as artificial tears. J Sci Ind Res 59:1027–1031

    CAS  Google Scholar 

  108. Zhang L, Selãoa TT, Nixona PJ (2019) Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. Algal Res 44:101702

    Article  Google Scholar 

  109. Hatha AAM, Edward G, Rahman KSMP (2007) Microbial biosurfactants-review J Mar Atmos Res 3:1–17

    Google Scholar 

  110. Chen C, Li D, Sun N et al (2019) Oil recovery from drilling cuttings by biosurfactant from kitchen waste oil. Energ Source Part A. https://doi.org/10.1080/15567036.2019.1624884

    Article  Google Scholar 

  111. Arad SM, Rapoport L, Moshkovich A et al (2006) Superior biolubricant from a species of red microalga. Langmuir 22:7313–7317

    Article  CAS  PubMed  Google Scholar 

  112. Place V, Wilson L (2008) Carrageenan-based formulations and associated methods of use. United States Patent US20050239742A1.

  113. Banerjee A, Ganguly S (2019) Mechanical behaviour of alginate film with embedded voids under compression-decompression cycles. Sci Rep 9:13193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Alves A, Caridade SG, Mano JF et al (2010) Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 345:2194–2200

    Article  CAS  PubMed  Google Scholar 

  115. Trabelsi L, Ben Ouada H, Bacha H et al (2008) Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21:405–412

    Article  CAS  Google Scholar 

  116. Gris B, Sforza E, Morosinotto T et al (2017) Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol 29:1781–1790

    Article  CAS  Google Scholar 

  117. Ge H, Zhang J, Zhou X et al (2014) Effects of light intensity on components and topographical structures of extracellular polymeric substances from Microcoleus vaginatus (Cyanophycea). Phycologia 53:167–173

    Article  CAS  Google Scholar 

  118. Ramachandran L, Marappa N, Sethumadhavan K et al (2020) Glycoprotein Prompted Plausible Bactericidal and Antibiofilm Outturn of Extracellular Polymers from Nostoc microscopicum. Appl Biochem Biotechnol 191:284–298

    Article  CAS  PubMed  Google Scholar 

  119. Vicente-Garcia V, Rios-Leal E, Calderon-Dominguez G (2003) Detection, Isolation and characterization of exopolysaccharides produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnol Bioeng 85:306–310

    Article  CAS  Google Scholar 

  120. Kvíderová J, Kumar D, Lukavský J et al (2019) Estimation of growth and exopolysaccharide production by two soil cyanobacteria, Scytonema tolypothrichoides and Tolypothrix bouteillei as determined by cultivation in irradiance and temperature crossed gradients. Eng Life Sci 19:184–195

    Article  PubMed  CAS  Google Scholar 

  121. Ozturk S, Aslim B (2009) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602

    Article  CAS  Google Scholar 

  122. Ray B, Lahaye M (1995) Cell-wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, chlorophyta) Extraction and chemical composition. Carbohydr Res 274:251–261

    Article  CAS  Google Scholar 

  123. Ray B (2006) Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydr Polym 66:408–416

    Article  CAS  Google Scholar 

  124. Sinha S, Astani A, Ghosh T et al (2010) Polysaccharides from Sargassum tenerrimum: Structural features, chemical modification and anti-viral activity. Phytochemistry 71:235–242

    Article  CAS  PubMed  Google Scholar 

  125. Da Silva CFD, Lima GC, dos Santos VIN et al (2020) Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. Int J Biol Macromol 159:415–421

    Article  CAS  Google Scholar 

  126. Barros FCN, da Silva DC, Sombra VG et al (2013) Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydr Polym 92:598–603

    Article  CAS  PubMed  Google Scholar 

  127. Chattopadhyay N, Ghosh T, Sinha S, Chattopadhyay K, Karmakar P, Ray B (2010) Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food Chem 118:823–829

    Article  CAS  Google Scholar 

  128. Gao J, Lin L, Sun B et al (2017) A comparison study on polysaccharides extracted from Laminaria japonica using different methods: structural characterization and bile acid-binding capacity. Food Funct 8:3043–3052

    Article  CAS  PubMed  Google Scholar 

  129. Cui C, Lu J, Sun-Waterhouse D et al (2016) Polysaccharides from Laminaria japonica: Structural characteristics and antioxidant activity. LWT 73:602–608

    Article  CAS  Google Scholar 

  130. El-Naggar NE, Hussein MH, Shaaban-Dessuuki SA et al (2020) Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep 10:3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang B, Liu Q, Huang Y et al (2018) Extraction of Polysaccharide from Spirulina and Evaluation of Its Activities. Evid Based Complement Alternat Med 11:3425615

    Google Scholar 

  132. Li M, Gao L, Lin L (2015) Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation. Ann Limnol–Int J Lim 51:329–334

    Article  CAS  Google Scholar 

  133. García-Cuberoa R, Cabanelasc ITD, Sijtsma L et al (2018) Barbosa Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Res 29:330–336

    Article  Google Scholar 

  134. Fertah M, Belfkira A, ElM D et al (2017) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10:S3707–S3714

    Article  CAS  Google Scholar 

  135. Gomez CG, Pérez Lambrecht MV, Lozano JE et al (2009) Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int J Biol Macromol 44:365–371

    Article  CAS  PubMed  Google Scholar 

  136. Tako M (2003) Rheological Characteristics of Fucoidan Isolated from Commercially Cultured Cladosiphon okamuranus. Bot Mar. 46:461–465

    Article  CAS  Google Scholar 

  137. Rahelivao MP, Andriamanantoanina H, Heyraud A et al (2014) Structure and Rheological Behaviour of Agar Extracted From Madagascar Sea Coast Algae. The Open Macromolecules 7:1–6

    Article  Google Scholar 

  138. Chentir I, Hamdi M, Doumandji A et al (2017) Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. J Biol Macromol 105:1412–1420

    Article  CAS  Google Scholar 

  139. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    Article  CAS  PubMed  Google Scholar 

  140. Bhatnagar M, Pareek S, Bhatnagar A et al (2014) Rheology and Characterization of a low viscosity emulsifying exopolymer from desert borne Nostoc calcicola. Indian J Biotechnol 13:241–246

    CAS  Google Scholar 

  141. Huang Z, Liu Y, Paulsen BS et al (1998) Studies on polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J Phycol 34:962–968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Biotechnology (Govt. of India), New Delhi for funding a National Repository for Microalgae and Cyanobacteria—Freshwater (NRMC-F) [BT/PR7005/PBD26/357/2015]. Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) Phase II is duly acknowledged for Confocal Laser Scanning Microscopy (CLSM).

Funding

The research was supported by Department of Biotechnology (Govt. of India), New Delhi for funding a National Repository for Microalgae and Cyanobacteria—Freshwater (NRMC-F) [BT/PR7005/PBD26/357/2015].

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: SG, TN; Literature search and data analysis: DB; Drafted: SG, DB; Critically revised the work: SG, TN.

Corresponding author

Correspondence to Thajuddin Nooruddin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, D., Gopalakrishnan, S. & Nooruddin, T. Carbohydrate Biolubricants from Algae and Cyanobacteria. J Polym Environ 29, 3444–3458 (2021). https://doi.org/10.1007/s10924-021-02144-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02144-z

Keywords

Navigation