Skip to main content
Log in

Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The effect of processing conditions (casting and extrusion) and plasticization on the disintegrability in compost of organically modified clay poly(3-hydroxybutyrate) nanocomposites was studied. Tributylhexadecylphosphonium bromide (TBHP) was used as organic modifier. As revealed by WAXS and TEM observations, intercalated nanobiocomposites with clay stacks and some individually dispersed platelets were obtained. The melting temperature of the neat PHB diminished with the addition of plasticizer, thus broadening the processing window. Biodegradation test revealed that while the clay slows down the degradation rate, the plasticizer increases the degradation of the samples, reaching a similar final percentage of disintegrability when both plasticizer and clay were added in the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8. doi:10.1021/bm049700c

    Article  CAS  Google Scholar 

  2. Peña C, Castillo T, García A, Millán M, Segura D (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–293. doi:10.1111/1751-7915.12129

    Article  Google Scholar 

  3. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  CAS  Google Scholar 

  4. Snell K, Peoples O (2009) PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels Bioprod Biorefin 3:456–467

    Article  CAS  Google Scholar 

  5. Baltieri RC, Innocentini Mei LH, Bartoli J (2003) Study of the influence of plasticizers on the thermal and mechanical properties of poly(3-hydroxybutyrate) compounds. Macromol Symp 197:33–44. doi:10.1002/masy.200350704

    Article  CAS  Google Scholar 

  6. Volova TG (2004) Polyhydroxyalkanoates plastic material of the 21st century. Nova science publishers Inc, Hauppauge, New York

    Google Scholar 

  7. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398

    Article  CAS  Google Scholar 

  8. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  9. Erceg M, Kovacic T, Klaric I (2005) Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab 90:313–318

    Article  CAS  Google Scholar 

  10. Rahman M, Brazel SC (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29:1223–1248

    Article  CAS  Google Scholar 

  11. Branciforti MC, Silveira Corrêa MC, Pollet E, Marcondes Agnelli JA, de Paula Nascente PA, Avérous L (2013) Crystallinity study of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. Polym Test 32(7):1253–1260

    Article  CAS  Google Scholar 

  12. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513

    Article  CAS  Google Scholar 

  13. Ghiya VP, Dave V, Gross RA, McCarthy SP (1996) Biodegradability of cellulose acetate plasticized with citrate esters. Pure Appl Chem A 33(5):627–638

    Google Scholar 

  14. Arrieta MP, Castro-López M, Rayón E, Barral-Losada LF, López-Vilariño JM, López J, González-Rodríguez MV (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62(41):10170–10180

    Article  CAS  Google Scholar 

  15. Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97(2):1822–1828

    Article  CAS  Google Scholar 

  16. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263

    Article  CAS  Google Scholar 

  17. Hablot E, Bordes P, Pollet E, Averous L (2008) Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polym Degrad Stab 93:413–421

    Article  CAS  Google Scholar 

  18. Puglia D, Fortunati E, D’Amico DA, Manfredi LB, Cyras VP, Kenny JM (2014) Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polym Degrad Stab 99:127–135

    Article  CAS  Google Scholar 

  19. Yoshie N, Nakasato K, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (2000) Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate). Polymer 41(9):3227–3234

    Article  CAS  Google Scholar 

  20. Corrêa MCS, Branciforti MC, Pollet E, Agnelli JAM, Nascente PAP, Avérous L (2012) Elaboration and characterization of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-Modified montmorillonite. J Polym Environ 20:283–290. doi:10.1007/s10924-011-0379-0

    Article  Google Scholar 

  21. D’Amico DA, Cyras VP, Manfredi LB (2014) Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly(3-hydroxybutyrate) and modified clays. Thermochim Acta 594:80–88

    Article  Google Scholar 

  22. Chiu HJ (2005) Segregation morphology of poly(3-hydroxybutyrate)/poly(vinyl acetate) and poly(3-hydroxybutyrate-co-10 % 3-hydroxyvalerate)/poly(vinylacetate) blends as studied via small angle X-ray scattering. Polymer 46:3906–3913

    Article  CAS  Google Scholar 

  23. Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8:3393–3400

    Article  CAS  Google Scholar 

  24. El-Hadi AM (2014) Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites. Polym Bull 71(6):1449–1470. doi:10.1007/s00289-014-1135-0

    Article  Google Scholar 

  25. Kurusu RS, Siliki CA, David É, Raymonde Demarquette N, Gauthier C, Chenal J-M (2015) Incorporation of plasticizers in sugarcane-basedpoly(3-hydroxybutyrate)(PHB): changes in microstructure and properties through ageing and annealing. Ind Crops Prod. doi:10.1016/j.indcrop.2014.12.040

    Google Scholar 

  26. Erceg M, Kovacic T, Klaric I (2005) Thermal degradation of poly(3hydroxybutyrate) with acetyl trybutyl citrate. Polym Degrad Stab 90:313–318

    Article  CAS  Google Scholar 

  27. Audic J, Lemiègre L, Corre Y (2014) Thermal and mechanical properties of a polyhydroxyalkanoate plasticized with biobased epoxidized broccoli oil. J Appl Polym Sci. doi:10.1002/app.3998

    Google Scholar 

  28. Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    Article  CAS  Google Scholar 

  29. Duquesne S, Jama C, Le Bras M, Delobel R, Recourt P, Gloague JM (2003) Elaboration of EVA–nanoclay systems—characterization, thermal behaviour and fire performance. Compos Sci Technol 63:1141–1148

    Article  CAS  Google Scholar 

  30. Chen JH, Tsai FC, Nien YH, Yeh P-H (1984) Isothermal crystallization of isotactic polypropylene blended with low molecular weight atactic polypropylene. Part I. Thermal properties and morphology development. Polymer 46:5680–5688

    Article  Google Scholar 

  31. Grassie N, Murria EJ, Holmes PA (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 2—changes in molecular weight. Polym Degrad Stab 6:95–103

    Article  CAS  Google Scholar 

  32. Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 1—identification and quantitative analysis of products. Polym Degrad Stab 6:47–61

    Article  CAS  Google Scholar 

  33. Li S, Girard A, Garreau H, Vert M (2001) Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polym Degrad Stab 71:61–67

    Article  CAS  Google Scholar 

  34. Calvão PS, Chenal J-M, Gauthier C, Demarquette NR, Bogner A, Cavaille JY (2012) Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polym Int 61:434–441. doi:10.1002/pi.3211

    Article  Google Scholar 

  35. Arrieta MP, López J, Rayón E, Jiménez A (2014) Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym Degrad Stab 108:307–318

    Article  CAS  Google Scholar 

  36. Wang S, Song C, Chen GT, Guo T, Liu J, Zhang B, Takeuchicet S (2005) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76

    Article  CAS  Google Scholar 

  37. Wu T, Xie AG, Tan SZ, Cai X (2011) Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf B Biointerfaces. 86(1):232–236. doi:10.1016/j.colsurfb.2011.04.009

    Article  CAS  Google Scholar 

  38. Yang Y, Shi Q, Feng J, Shu X, Feng J (2014) Preparation and antibacterial properties of an activated carbon sphere–quaternary phosphonium salt composite. RSC Adv 4:50708–50712. doi:10.1039/C4RA07282K

    Article  CAS  Google Scholar 

  39. Hoglund A, Hakkarainen M, Albertsson A-C (2010) Migration and hydrolysis of hydrophobic polylactide plasticizer. Biomacromolecules 11:277–283

    Article  CAS  Google Scholar 

  40. Bitinis N, Fortunati E, Verdejo R, Armentano I, Torre L, Kenny JM, López-Manchado MA (2014) Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Appl Clay Sci 93–94:78–84

    Article  Google Scholar 

  41. Correa MCS, Rezende ML, Rosa DS, Agnelli JAM, Nascente PAP (2008) Surface composition and morphology of poly(3-hydroxybutyrate) exposed to biodegradation. Polym Test 27(4):447–452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the National Research Council (CONICET); PIP 0014 and PIP 0527; the National Agency for the Promotion of Science and Technology (ANPCyT); PICT 1983; and the University of Mar del Plata, Argentina, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Puglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puglia, D., Fortunati, E., D’Amico, D.A. et al. Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay. J Polym Environ 24, 12–22 (2016). https://doi.org/10.1007/s10924-015-0744-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0744-5

Keywords

Navigation