Skip to main content
Log in

Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids?

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Theoretical and empirical evidence suggests that the ecological niche of species tends to be conservative over evolutionary time in many taxonomic groups, thus representing long-term stable constraints on species geographic distributions. Using an ecological niche modeling approach, we assessed the impact of climatic change on wild felid species potential range shifts over the last 130 K years in the Americas and the potential of such shifts as an extinction driver. We found a significant range shift for most species (both living and extinct) across their distributions driven by large-scale environmental changes. Proportionally, the most drastic range increase for all species occurred in the Last Glacial Maximum (LGM: 18 K years)–Current transition, while for the Last Inter-Glacial (LIG: 130 K years)–LGM transition an important range reduction occurred, which was larger for extinct North American species. In conclusion, the reduction of climatically suitable areas for many species in the transition LIG–LGM may have produced population reductions, which, in turn, may have played an important role in species’ extinction throughout the continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agosta SJ, Bernardo J (2013) New macroecological insights into functional constraints on mammalian geographical range size. Proc R Soc B Biol Sci 280:20130140. doi:10.1098/rspb.2013.0140

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi: 10.1111/j.1365-2699.2006.01482.x

    Article  Google Scholar 

  • Arroyo-Cabrales J, Polaco OJ, Johnson E, Ferrusquía-Villafranca I (2010) A perspective on mammal biodiversity and zoogeography in the late Pleistocene of México. Quaternary Internatl 212:187–197. doi:10.1016/j.quaint.2009.05.012

    Article  Google Scholar 

  • Austin MP, Belbin L, Meyers JA, Doherty MD, Luoto M (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Model 199:197–216

    Article  Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo C, Tilston B, Chakrabarty P (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA 112(19):1–6. doi:10.1073/pnas.1423853112

  • Barnett R, Barnes I, Phillips MJ, Martin LD, Harington CR, Leonard JA, Cooper A (2005) Evolution of the extinct sabretooths and the American cheetah-like cat. Curr Biol 15:R589–R590. doi:10.1016/j.cub.2005.07.052

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary Internatl 217:10–29. doi:10.1016/j.quaint.2009.11.017

    Article  Google Scholar 

  • Berta A (1985) The status of Smilodon in North and South America. Contrib Sci Nat Hist Mus Los Angeles County 370:1–15

  • Blois JL, Hadly EA (2009) Mammalian response to Cenozoic climatic change. Annu Rev Earth Planet Sci 37:181–208. doi:10.1146/annurev.earth.031208.100055

    Article  CAS  Google Scholar 

  • Blois JL, Williams JW, Fitzpatrick MC, Ferrier S, Veloz SD, He F, Liu Z, Manion G, Otto-Bliesner B (2013) Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum. Ecography 36:460–473. doi:10.1111/j.1600-0587.2012.07852.x

    Article  Google Scholar 

  • Bofarull AM, Royo AA, Fernández MH, Ortiz-Jaureguizar E, Morales J (2008) Influence of continental history on the ecological specialization and macroevolutionary processes in the mammalian assemblage of South America: differences between small and large mammals. BMC Evol Biol 8 (1):97

    Article  PubMed  PubMed Central  Google Scholar 

  • Borrero LA (2008) Extinction of Pleistocene megamammals in South America: the lost evidence. Quaternary Internatl 185:69–74. doi:10.1016/j.quaint.2007.10.021

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laıˆne´ A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum–Part 2: feedbacks with emphasis on the location of the ITCZ and mid and high latitudes heat budget. Clim Past 3:279–296

    Article  Google Scholar 

  • Brown J (1995) Macroecology. The University of Chicago Press, Chicago and London

    Google Scholar 

  • Canto J, Yáñez J, Rovira J (2010) Estado actual del conocimiento de los mamíferos fósiles de Chile. Estud Geol 66:255–284

    Article  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Purvis A (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proc Natl Acad Sci USA 103 (11):4157–4161. doi:10.1073/pnas.0510541103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen P (2013) Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29:543–559. doi:10.1111/cla.12008

    Article  Google Scholar 

  • Cione AL, Tonni EP, Soibelzon L (2003) The broken zig-zag: Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales 5:1–19

    Article  Google Scholar 

  • Cione AL, Tonni EP, Soibelzon L (2009) Did humans cause the late Pleistocene–early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes G (ed) American Megafaunal Extinctions at the End of the Pleistocene. Springer Science, Dordrecht, pp 125–144

  • Cione AL, Tonni EP, Vucetich M (2007) Mamíferos continentales del Mioceno tardío a la actualidad en la Argentina: cincuenta años de estudios. Ameghiniana 50:257–278

    Google Scholar 

  • Cisneros JC (2005) New Pleistocene vertebrate fauna from El Salvador. Revista Brasileira de Paleontología 8:239–255

    Article  Google Scholar 

  • Croitor R, Brugal, JP (2010) Ecological and evolutionary dynamics of the carnivore community in Europe during the last 3 million years. Quaternary Internatl 212: 98–108. doi:10.1016/j.quaint.2009.06.001

    Article  Google Scholar 

  • Culver M, Johnson WE, Pecon-Slattery J, O’Brien SJ (2000) Genomic ancestry of the American puma (Puma concolor). J Hered 91:186–197. doi:10.1093/jhered/91.3.186

    Article  CAS  PubMed  Google Scholar 

  • Davies TJ, Buckley LB, Grenyer R, Gittleman JL (2011) The influence of past and present climate on the biogeography of modern mammal diversity. Proc Roy Soc B Biol Sci 366:2526–2535. doi:10.1098/rstb.2011.0018

  • Davies TJ, Purvis A, Gittleman JL (2009) Quaternary climate change and the geographic ranges of mammals. Am Nat 174:297–307. doi:10.1086/603614

    Article  PubMed  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679. doi:10.1126/science.292.5517.673

    Article  CAS  PubMed  Google Scholar 

  • De Vivo M, Carmignotto AP (2004) Holocene vegetation change and the mammal faunas of South America and Africa. J Biogeogr 31:943–957. doi:10.1111/j.1365-2699.2004.01068.x.

    Article  Google Scholar 

  • Dundas R (1999) Quaternary records of the dire wolf, Canis dirus, in North and South America. Boreas 28: 375–385.

    Article  Google Scholar 

  • Dyke AS (2005) Late Quaternary vegetation history of northern North America based on pollen, macrofossil, and faunal remains. Geogr Phys Quatern 59(2–3):211–262

    Google Scholar 

  • Eizirik E, Bonatto SL, Johnson WE, Crawshaw PG Jr, Vié JC, Brousset DM, O’Brien SJ, Salzano FM (1998) Phylogeographic patterns and evolution of the mitochondrial DNA control region in two Neotropical cats (Mammalia, Felidae). J Mol Evol 47(5):613–624

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Graham, CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 66–77

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Farlow JO, Pianka ER (2002) Body size overlap, habitat partitioning and living space requirements of terrestrial vertebrate predators: implications for the paleoecology of large theropod dinosaurs. Hist Biol 16: 21–40. doi:10.1080/0891296031000154687

    Article  Google Scholar 

  • Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen S-E, Ono Y, Pinot S, Stute M, Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dynam 15:823–856

    Article  Google Scholar 

  • Ferrusquía-Villafranca I, Arroyo-Cabrales J, Martínez-Hernández E, Gama-Castro J, Ruiz-González J, Polaco OJ, Johnson E (2010) Pleistocene mammals of Mexico: a critical review of regional chronofaunas, climate change response and biogeographic provinciality. Quaternary Internatl 217:53–104. doi:10.1016/j.quaint.2009.11.036

    Article  Google Scholar 

  • Gaston KJ (2003) The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford

    Google Scholar 

  • Goswami A, Friscia A (2010) Carnivoran Evolution: New Views on Phylogeny, Form and Function. Cambridge University Press, New York

    Book  Google Scholar 

  • Graham R (2001) Late Quaternary biogeography and extinction of proboscideans in North America. The world of elephants. Proceedings of the 1st International Congress, Rome, pp 16–20

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Internatl J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O’Brien SJ (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77. doi:10.1126/science.1122277

  • Johnson WE, Pecon-Slattery J, Eizirik E, Kim J, Menotti-Raymond M, Bonacic C, Cambre R, Crawshaw P, Nunes A, Seuanez H, Moreira MA, Seymour KL, Simon F, Swanson W, O’Brien SJ (1999) Disparate phylogeographic patterns of mitochondrial DNA variation in four closely related South American small cat species. Mol Ecol 8:S79–S94. doi:10.1046/j.1365-294X.1999.00796

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Purvis A, Gittleman JL (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90: 2648. doi:10.1890/08-1494.1

    Article  Google Scholar 

  • Kurtén B, Werdelin L (1990) Relationships between North and South American Smilodon. J Vertebr Paleontol 10(2):158–169. doi: 10.1080/02724634.1990.10011804

    Article  Google Scholar 

  • Lessa EP, Farina RA (1996) Reassessment of extinction patterns among the late Pleistocene mammals of South America. Palaeontology 39: 651–662

    Google Scholar 

  • Levinsky I (2010) Species distributions and climate change-linking the past and the future. PhD Dissertation, University of Copenhagen, Denmark

  • Levinsky I, Araújo MB, Nogués-Bravo D, Haywood AM, Valdes PJ, Rahbek C (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. Global Ecol Biogeogr 22:351–363. doi:10.1111/geb.12045

    Article  Google Scholar 

  • Li X, Jiang G, Tian H, Xu L, Yan C, Wang Z, Wei F, Zhang Z (2014) Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography 37:01–09. doi:10.1111/ecog.00795

    Article  Google Scholar 

  • Lobo JM, Jiménez-valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17(2):145–151. doi:10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography. 4rd ed. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J, Marske KA, Ugan A, Borregaard MK, Gilbert MTP, Nielsen R, Ho SYW, Goebel T, Graf KE, Byers D, Stenderup JT, Rasmussen M, Campos PF, Leonard JA, Koepfli K-P, Froese D, Zazula G, Stafford TW, Aaris-Sørensen K, Batra P, Haywood AM, Singarayer JS, Valdes PJ, Boeskorov G, Burns JA, Davydov SP, Haile J, Jenkins DL, Kosintsev P, Kuznetsova T, Lai X, Martin LD, McDonald HG, Mol D, Meldgaard M, Munch K, Stephan E, Sablin M, Sommer RS, Sipko T, Scott E, Suchard MA, Tikhonov A, Willerslev R, Wayne RK, Cooper A, Hofreiter M, Sher A, Shapiro B, Rahbek C, Willerslev E (2011) Species-specific responses of late Quaternary megafauna to climate and humans. Nature 479:359–364. doi:10.1038/nature10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace G, Masundire H, Baillie J, Ricketts T, Brooks T, Hoffmann M, Stuart S, Balmford A, Purvis A, Reyers B, Wang J, Revenga C, Kennedy E, Naeem S, Alkemade R, Allnutt T, Bakarr M, Bond W, Chanson J, Cox N, Fonseca G, Hilton-Taylor C, Loucks C, Rodrigues A, Sechrest W, Stattersfield A, Janse van Rensburg B, Whiteman C, Abell R, Cokeliss Z, Lamoreux J, Pereira HM, Thönell J, Williams P (2005). Biodiversity. In: Hassan R, Scholes R, Ash, N (eds) Ecosystems and Human Well-being: Current State and Trends, Volume 1.  The Millenium Ecosystem Assessment Series, Island Press, Washington, pp 77–122

  • Marino J, Bennett M, Cossios D, Iriarte A, Lucherini M, Pliscoff P, Sillero-Zubiri C, Villalba L, Walker S (2011) Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Divers Distrib 17:311–322. doi:10.1111/j.1472-4642.2011.00744.x

    Article  Google Scholar 

  • Martínez-Meyer E (2002) Evolutionary trends in ecological niches of species. PhD Dissertation, University of Kansas, Lawrence

  • Martínez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecol Biogeog 13(4):305–314. doi:10.1111/j.1466-822x.2004.00107.x

    Article  Google Scholar 

  • Mattern M, McLennan DA (2000) Phylogeny and speciation of felids. Cladistics 16:232–253. doi:10.1006/clad.2000.0132

    Article  Google Scholar 

  • McPherson J (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41(5):811–823. doi:10.1111/j.0021-8901.2004.00943.x

    Article  Google Scholar 

  • Merow C, Smith, MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Mikkelson GM (2005) Niche-based vs. neutral models of ecological communities. Biology and Philosophy 20:557–566. doi:10.1007/s10539-005-5583-7

    Article  Google Scholar 

  • Morris AB, Graham CH, Soltis DE, Soltis PS (2010) Reassessment of phylogeographical structure in an eastern North American tree using Monmonier’s algorithm and ecological niche modelling. J Biogeogr 37:1657–1667. doi:10.1111/j.1365-2699.2010.02315.x

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria, RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Meth Ecol Evol 5(11):1198–1205. doi:10.1111/2041-210X.12261

    Article  Google Scholar 

  • Napolitano C, Bennett M, Johnson WE, O’Brien SJ, Marquet PA, Barría I, Poulin E, Iriarte A (2008). Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Mol Ecol 17: 678–690. doi:10.1111/j.1365-294X.2007.03606.x

    Article  CAS  PubMed  Google Scholar 

  • Nogués-Bravo D, Rodríguez J, Hortal J, Batra P, Araújo MB (2008) Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol 6(4):e79

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyakatura K, Bininda-Emonds ORP (2012) Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 10(1):1–31. doi:10.1186/1741-7007-10-12

    Article  Google Scholar 

  • O’Regan HJ, Turner A, Wilkinson DM (2002) European quaternary refugia: a factor in large carnivore extinction? J Quaternary Sci 17: 789–795. doi:10.1002/jqs.693

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51: 933. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Otto-Bliesner BL, Marshall Shawn J, Overpeck Jonathan T, Miller Gifford H, Hu Aixue, CAPE Last Interglacial Project members (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768): 1751–1753. doi:10.1126/science.1120808

    Article  CAS  PubMed  Google Scholar 

  • Palombo MR, Alberdi MT, Azanza B, Giovinazzo C, Prado JL, Sardella R (2008) How did environmental disturbances affect carnivoran diversity? A case study of the Plio-Pleistocene Carnivora of the north-western Mediterranean. Evol Ecol 23: 569–589. doi:10.1007/s10682-008-9256-2

    Article  Google Scholar 

  • Peterson AT, Martínez-Meyer E, González-Salazar C (2004) Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Divers Distrib 10(4):237–246. doi:10.1111/j.1366-9516.2004.00097.x

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Bastos-Araújo M (2011) Ecological Niches and Geographic Distributions. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. doi:10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Prevosti FJ (2006) New material of Pleistocene cats (Carnivora, Felidae) from southern South America, with comments on biogeography and the fossil record. Geobios-Lyon 39:679–694

    Article  Google Scholar 

  • Prevosti FJ, Noriega J, Garcia-Esponda C, Ferrero B (2005) Primer registro de Dusicyon gymnocercus (Fisher, 1814) (Carnivora: Canidae) en el pleistoceno de Entre Ríos (Argentina). Revista Española de Paleontología 20:159–167

  • Prevosti FJ, Forasiepi A, Zimicz N (2011) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammal Evol 20(1):3–21. doi:10.1007/s10914-011-9175-9

  • Prevosti FJ, Soibelzon L (2012) Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. In: Oatterson BD, Costa LP (eds) Bones, Clones, and Biomes: An Extended History of Recent Neotropical Mammals. The University of Chicago Press, Chicago, pp 102–122

    Chapter  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc Roy Soc B Biol Sci 267:1947–1952

    Article  CAS  Google Scholar 

  • Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M (2012) Ecological specialization in fossil mammals explains Cope’s rule. Am Nat 179(3):328–337. doi:10.1086/664081

    Article  CAS  PubMed  Google Scholar 

  • Santika T (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Global Ecol Biogeogr 20:181–192. doi:10.1111/j.1466-8238.2010.00581.x

    Article  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106:19644–19650. doi:10.1073/pnas.0901637106

    Article  PubMed  PubMed Central  Google Scholar 

  • Soibelzon L, Prevosti FJ (2007) Los carnívoros (Carnivora, Mammalia) terrestres del Cuaternario de América del Sur. In: Pons GX, Vicens D (eds) Geomorfología litoral i Quaternari. Homenatge a Joan Cuerda Barceló, Mon Soc Hist Nat Balears, Palma de Mallorca, 14:49–68

  • Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal and patterns of species similarity. J Biogeogr 33:1044–1054. doi:10.1111/j.1365-2699.2006.01473.x

    Article  Google Scholar 

  • Sunquist M, Sunquist F (2002) Wild Cats of the World. The University of Chicago Press, Chicago

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta, MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecol Biogeogr 14:347–357. doi:10.1111/j.1466-822X.2005.00162.x

    Article  Google Scholar 

  • Tôrres NM, De Marco P, Santos T, Silveira L, de Almeida AT, Diniz-Filho JA (2012) Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics. Divers Distrib 18:615–627. doi:10.1111/j.1472-4642.2012.00892.x

    Article  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence only methods for modelling species distribution. Divers Distrib 13: 397–405

    Article  Google Scholar 

  • Webb SD (2006) The Great American Biotic Interchange: patterns and processes. Ann Mo Bot Gard 93(2):245–257. doi:10.3417/0026-6493(2006)93[245:TGABIP]2.0.CO;2

    Article  Google Scholar 

  • Wilson D, Mittermeier RA (2009) Handbook of the Mammals of the World. Vol. I. Carnivores. Lynx Editions, Barcelona

    Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. Third Edition. Johns Hopkins University Press, Baltimore

    Google Scholar 

Download references

Acknowledgments

This paper constitutes a partial fulfillment of the Graduate Doctoral Degree program in Biological Sciences of the Universidad Nacional Autónoma de México (UNAM) of the first author. A. Arias-Alzate acknowledges the Posgrado en Ciencias Biológicas, the Instituto de Biología-UNAM and the scholarship and financial support provided by the Consejo Nacional de Ciencia y Tecnología of México (CONACyT) (Scholarship 280993). We thank R. Medellín, L. Viquez-R, and H. Zarza for permanent support throughout the research and for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Martínez-Meyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Alzate, A., González-Maya, J.F., Arroyo-Cabrales, J. et al. Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids?. J Mammal Evol 24, 427–438 (2017). https://doi.org/10.1007/s10914-016-9350-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9350-0

Keywords

Navigation