Skip to main content

Advertisement

Log in

Historical climate change as driver of populational range expansion and differentiation in a rare and partially migratory Neotropical bird

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Populations peripheral to a species’ distribution are more susceptible to new selective pressures, changes, differentiation, and extinction. The Sooty Swift Cypseloides fumigatus (Apodidae) is a rare bird found mainly in central and southeastern South America. Populations of this species are resident in some localities throughout the year, whereas other populations migrate following the breeding season. Recently, a northern population was found well beyond the limits of its known distribution, with approximately 1000 km of occurrence gap between this newly discovered population and the southern distribution. Here, we reveal changes in species distribution over time, as well as compare the morphometric and genetic patterns of populations in the central-southern distribution of the Atlantic Forest and the northern peripheral population within the Caatinga. Our climate niche models indicate a scenario of expanding species distribution during the Last Glacial Maximum, which potentially drove the colonization of the northernmost population. This scenario of peripheral isolation is also supported by the spatial morphometric and genetic variation among populations of the humid forest enclave within the Caatinga and the Cerrado–Atlantic Forest populations. These findings provide important insights into the connectivity between distant Sooty Swift populations, the species' migratory behavior, as well as implications for conservation.

Zusammenfassung

Historischer Klimawandel als Auslöser für Ausbreitung und Auftrennung einer seltenen, teilziehenden neotropischen Vogelart 

Populationen aus den Randbereichen des Verbreitungsgebiets einer Art sind empfindlicher gegenüber neuen Selektionsdrücken, Veränderungen, Differenzierung und Aussterben. Der Rauchsegler Cypseloides fumigatus (Apodidae) ist ein seltener Vogel, der hauptsächlich im zentralen und südöstlichen Südamerika vorkommt. Populationen dieser Art sind mancherorts Standvögel, während andere im Anschluss an die Brutsaison abwandern. Kürzlich wurde eine nördliche Population deutlich außerhalb der Grenzen des bisher bekannten Verbreitungsgebiets entdeckt, die durch eine Verbreitungslücke von etwa 1.000 km vom südlichen Areal der Art getrennt ist. Wir zeigen zeitliche Veränderungen der Artverbreitung und vergleichen morphometrische und genetische Muster in Populationen des zentral-südlichen Verbreitungsgebiets im Atlantischen Regenwald und in der nördlichen, peripheren Population innerhalb de Caatinga. Unsere Klima-Nischenmodelle weisen auf ein Szenario mit einer Ausweitung des Verbreitungsgebiets der Art auf dem Höhepunkt der letzten Eiszeit hin, die möglicherweise die Kolonisierung der am weitesten nördlich gelegenen Population vorangetrieben hat. Dieses Szenario einer peripheren Isolation wird auch durch die räumliche morphometrische und genetische Variabilität zwischen Populationen der feuchten Wald-Enklave innerhalb der Caatinga und den Cerrado/Atlantischer Regenwald-Populationen gestützt. Aus diesen Ergebnisse leiten sich wichtige Erkenntnisse über die möglichen Verbindungen zwischen entfernten Rauchsegler-Populationen, über das Wanderverhalten der Art sowie ihren Schutz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albano C, Girão W (2008) Aves das matas úmidas das serras de Aratanha, Baturité e Maranguape, Ceará. Revista Brasileira De Ornitologia 16:142–154

    Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232

    Article  Google Scholar 

  • Amaral FR, Maldonado-Coelho M, Aleixo A, Luna LW, Rêgo PS, Araripe J, Souza TO, Silva WAG, Thom G (2018) Recent chapters of Neotropical history overlooked in phylogeography: Shallow divergence explains phenotype and genotype uncoupling in Antilophia manakins. Mol Ecol 27:4108–4120

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distribution. Trends Ecol Evol 22(1):42–47

    Article  PubMed  Google Scholar 

  • Batalha-Filho H, Cabanne GS, Miyaki CY (2012) Phylogeography of an Atlantic forest passerine reveals demographic stability through the last glacial maximum. Mol Phylogenet Evol 65:892–902

    Article  PubMed  Google Scholar 

  • Batalha-Filho H, Fjeldså J, Fabre PH, Miyaki CY (2013) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50

    Article  Google Scholar 

  • Batalha-Filho H, Pessoa RO, Fabre P, FjeldsåJ IM, Ericson PGP, Silveira LF, Miyaki CY (2014) Phylogeny and historical biogeography of gnateaters (Passeriformes, Conopophagidae) in the South America forests. Mol Phylogenet Evol 79:422–432

    Article  PubMed  Google Scholar 

  • Bell RC, Parra JL, Tonione M, Hoskin CJ, Mackenzie JB, Williams SE, Moritz C (2010) Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Mol Ecol 19(12):2531–2544

    PubMed  Google Scholar 

  • Biancalana RN (2014) Breeding biology of the White-collared Swift Streptoprocne zonaris in southeastern Brazil. Revista Brasileira De Ornitologia 22:339–344

    Article  Google Scholar 

  • Biancalana RN (2015) Breeding biology of the Sooty Swift Cypseloides fumigatus in São Paulo, Brazil. Wilson J Ornithol 127:402–410

    Article  Google Scholar 

  • Biancalana RN, Nogueira W, Bessa R, Pioli D, Albano C, Lees AC (2012) Range extensions and breeding biology observations of the Sooty Swift (Cypseloides fumigatus) in the states of Bahia, Goiás, Minas Gerais and Tocantins. Revista Brasileira De Ornitologia 20:87–92

    Google Scholar 

  • Biancalana RN, Amaral FR, Biondo C (2019) Novel microsatellites for Cypseloides fumigatus, cross-amplifiable in Streptoprocne zonaris. Revista Brasileira De Ornitologia 27:207–211

    Article  Google Scholar 

  • Broennimann O, Di Cola V, Guisan A (2018) ecospat: spatial ecology miscellaneous methods. R package version 3.0. https://CRAN.R-project.org/package=ecospat. Accessed 18 Feb 2020

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7):694–700

    Article  Google Scholar 

  • Cabanne GS, Colderón L, Arias NT, Flores P, Pessoa R, d'Horta FM, Miyaki CY (2016) Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol J Linn Soc 119:856–872

    Article  Google Scholar 

  • Carnaval AC (2002) Phylogeography of four frog species in forest fragments of Northeastern Brazil: a preliminary study. Integr Comp Biol 45(5):913–921

    Article  Google Scholar 

  • Carnaval AC, Bates JM (2007) Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in northeastern Brazil. Evolution 61:2942–2957

    Article  CAS  PubMed  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–789

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modeling procedure for mapping potential distribution of plants and animals. Biodivers Conserv 2:667–680

    Article  Google Scholar 

  • Castellanos-Morales G, Gámez N, Castillo-Gámez RA, Eguiarte LE (2016) Peripatric speciation of an endemic species driven by Pleistocene climate change: the case of the Mexican prairie dog (Cynomys mexicanus). Mol Ecol Evol 94:171–181

    Google Scholar 

  • Chantler P, Driessens G (2000) Swifts: a guide to the swifts and treeswifts of the world. New Haven Yale University Press

    Google Scholar 

  • Chantler P (2020) Swifts (Apodidae). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions Barcelona. Retrieved from https://www.hbw.com/node/52266 Accessed 23 Mar 2020

  • Cheng H, Sinha A, Cruz WF, Wang X, Edwards RL, d’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1411

    Article  PubMed  CAS  Google Scholar 

  • Claramunt S (2021) Flight efficiency explains differences in natal dispersal distance in birds. Ecology 129:e03442

    Google Scholar 

  • Collins CT (2010) Notes on the breeding biology of the white-throated swift in Southern California. Bull South Calif Acad Sci 109:23–36

    Google Scholar 

  • Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9:539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • d’Horta FM, Cabanne GS, Meyer D, Miyaki CY (2011) The genetic effects of Late Quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine. Mol Ecol 20:1923–1935

    Article  PubMed  Google Scholar 

  • d’Horta FM, Cuervo AM, Ribas CC, Brumfield RT, Miyaki CY (2013) Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J Biogeogr 40:37–49

    Article  Google Scholar 

  • Dixo M, Metzer JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad population in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB, Swanson WJ, Sorenson MD (2005) Speciation in birds: genes, geography, and sexual selection. Proc Natl Acad Sci 102:6550–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Freedman MG, Dingle H, Strauss SY, Ramírez SR (2020) Two centuries of monarch butterfly collections reveal contrasting effects of range expansion and migration loss on wing traits. Proc Natl Acad Sci USA 117:28887–28893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey JK (1993) Modes of peripheral isolate formation and speciation. Syst Biol 42(3):373–381

    Article  Google Scholar 

  • Fu YX (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilets S, Hastings A (1996) Founder effects speciation: a theoretical reassessment. Am Nat 147:466–491

    Article  Google Scholar 

  • Gómez-Bahamón V, Márquez R, Jahn AE, Miyaki CY, Tuero DT, Laverde O, Restrepo S, Cadena CD (2020) Speciation associated with shifts in migratory behavior in an avian radiation. Curr Biol 30:1312–1321

    Article  PubMed  CAS  Google Scholar 

  • Grant PR, Grant BR (2011) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press

    Google Scholar 

  • Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Haag T, Santos AS, Sana DA, Morato RG, Cullen L Jr, Crawshaw PG Jr, de Angelo C, di Bitetti MS, Salzano FM, Eizirik E (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera once). Mol Ecol 19:4906–4921

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrison KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025

    Article  Google Scholar 

  • Hedenström A (2008) Adaptations to migration in birds: behavioral strategies, morphology and scaling effects. Phil Trans R Soc B 363:287–299

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, van Etten J, Sumner M, Cheng J, Bevan A, Bivand R et al (2015) Raster: geographic data analysis and modeling. http://CRAN.R-project.org/package=raster. Accessed 18 Feb 2020

  • Hirshman SE, Gunn C, Levad RG (2007) Breeding phenology and success of Black Swifts in Box Canyon, Ouray, Colorado. Wilson J Ornithol 119:678–685

    Article  Google Scholar 

  • Hoelzel AR, Bruford MW, Fleischer RC (2019) Conservation of adaptive potential and functional diversity. Conserv Genet 20:1–5

    Article  Google Scholar 

  • Hoskin CJ, Tonione M, Higgie M, MacKenzie JB, Williams SE, VanDerWal J, Moritz C (2011) Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog. Am Nat 178(5):561–578

    Article  PubMed  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Seileis A (2004) kernlab—an S4 package for kernel methods in R. J Stat Softw 11(9):1–20

    Article  Google Scholar 

  • Lawson LP, Bates JM, Menegon M, Loader SP (2015) Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex. BMC Evol Biol 15:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal IR, Silva JMC, Tabarelli M, Lacher TE Jr (2005) Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv Biol 19(3):701–706

    Article  Google Scholar 

  • Ledo RMD, Colli GR (2017) The historical connections between the Amazon and the Atlantic Forest revisited. J Biogeogr 44:2551–2563

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–760

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2(3):18–22

    Google Scholar 

  • Luna LW, Souza TO, Carneiro LS, Silva WAG, Schneider H, Sampaio I, Araripe J, Rêgo PS (2017) Molecular data and distribution dynamics indicate a recent and incomplete separation of manakins species of the genus Antilophia (Aves: Pipridae) in response to Holocene climate change. J Avian Biol 48:1177–1188

    Article  Google Scholar 

  • Marín M (2016) Breeding biology and natural history notes for White-collared Swift Streptoprocne zonaris in Costa Rica. Bull Br Ornithol Club 136:199–208

    Google Scholar 

  • Milot E, Weimerskirch H, Duchesne P, Bernatchez L (2007) Surviving with low genetic diversity: the case of albatrosses. Proc R Soc Lon Biol 274:779–787

    CAS  Google Scholar 

  • Morinha F, Dávila JA, Bastos E, Cabral JA, Frías O, González JL, Travassos P, Carvalho D, Milá B, Blanco G (2017) Extreme genetic structure in a social bird species despite high dispersal capacity. Mol Ecol 26:2812–2825

    Article  PubMed  Google Scholar 

  • Nix HA (1986) A biogeographic analysis of Australian elapid snake. In: Longmore R (ed) Atlas of Elapid snakes of Australia: Canberra, Australian Flora and Fauna, Series 7. Australian Government Publishing Service, pp 4–15

    Google Scholar 

  • Pearman M, Areta JI, Roesler I, Bodrati A (2010) Confirmation of the Sooty Swift (Cypseloides fumigatus) in Argentina with notes on its nest placement, seasonality, and distribution. Ornitol Neotrop 21:351–359

    Google Scholar 

  • Peres EA, Sobral-Souza T, Perez MF, Bonatelli IA, Silva DP, Silva MJ, Solferini VN (2015) Pleistocene niche stability and lineage diversification in the subtropical spider Araneus omnicolor (Araneidae). PLoS ONE 10:e0121543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14(10):2943–2957

    Article  CAS  PubMed  Google Scholar 

  • Philips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Pichorim M, Monteiro-Filho EL (2010) Population size, survival, longevity, and movements of the Biscutate Swift in southern Brazil. Ann Zool Fenn 47(2):123–132

    Article  Google Scholar 

  • Pichorim M, Roper JJ, Monteiro Filho ELDA (2009) Experimental study of nest-site selection in the Biscutate Swift (Streptoprocne biscutata, Aves: Apodidae) in Southern Brazil. Biotropica 41(1):81–84

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 05 Jan 2021

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 149:1141–1153

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP6: DNA sequence Polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Salzburguer W, Ewing GB, Haeseller AV (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963

    Article  Google Scholar 

  • Sambrook J, Russel DW (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York NY

    Google Scholar 

  • Santos AMM, Cavalcanti DR, Silva JMC, Tabarelli M (2007) Biogeographical relationship among tropical forests in northeastern Brazil. J Biogeogr 34:437–446

    Article  Google Scholar 

  • Santos JC, Leal IR, Almeida-Cortez JS, Fernandes W, Tabarelli M (2011) Caatinga: the scientific negligence experienced by a dry tropical forest. Trop Conserv Sci 4(3):276–286

    Article  Google Scholar 

  • SAS Institute Inc (2012) JMP® 10 Discovering JMP. SAS Institute Inc, Cary, NC

    Google Scholar 

  • Savile DBO (1957) Adaptive evolution in the avian wing. Evolution 11:212–224

    Article  Google Scholar 

  • Schoener TW (1968) Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Silva JMC, Leal IR, Tabarelli M (2017) Caatinga: the largest tropical dry forest region in South America. Springer, New York

    Book  Google Scholar 

  • Silveira MHB, Mascarenhas R, Cardoso D, Batalha-Filho H (2019) Pleistocene climatic instability drove the historical distribution of forest island in the northeastern Brazilian Atlantic Forest. Paleogeogr Paleoclimatol Paleoecol 527:67–76

    Article  Google Scholar 

  • Sinai I, Segev O, Weil G, Oron T, Merilä J, Templeton AR, Blaustein L, Greenbaum G, Blank L (2019) The role of landscape and history on the genetic structure of peripheral populations of the Near Eastern fire salamander, Salamandra infraimmaculata, in Northern Israel. Conserv Genet 20:875–889

    Article  CAS  Google Scholar 

  • Sobral-Souza T, Lima-Ribeiro MS, Solferini VN (2015) Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol Ecol 29:643–655

    Article  Google Scholar 

  • Sorenson MD, Ast DE, Dimcheff DE, Yuri T, Mindell PD (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12(2):105–114

    Article  CAS  PubMed  Google Scholar 

  • Souza MJN, Oliveira VPV (2006) Os enclaves úmidos e sub-úmidos do semi-árido do nordeste brasileiro (humid and sub-humid segments of the semi-arid area of the brazilian northeast). Mercator Fortaleza 9:85–102

    Google Scholar 

  • Spurgin LG, Illera JC, Jorgensen TH, Dawson DA, Richardson DS (2014) Genetic and phenotypic divergence in an island bird: isolation by distance, by colonization or by adaptation? Mol Ecol 23:1028–1039

    Article  PubMed  Google Scholar 

  • Stopiglia R, Raposo M (2007) Distribuição e biologia do andorinhão-preto-da-cascata Cypseloides fumigatus e do andorinhão-velho-da-cascata C. senex no Brasil: Uma síntese. Cotinga 27:49–57

    Google Scholar 

  • Tabarelli M, Aguiar AV, Ribeiro MC, Metzer JP, Peres CA (2010) Prospect for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscape. Biol Conserv 143:2328–2340

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the natural mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Article  Google Scholar 

  • Taylor RS, Friesen VL (2017) The role of allochrony in speciation. Mol Ecol 26:3330–3342

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos MF, Silveira LF, Duca C (2006) Range extension for Sooty Swift Cypseloides fumigatus, with notes on its nesting in central Brazil. Cotinga 25:74–76

    Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Werneck F (2011) The diversification of the eastern South American open vegetation biomes: historical biogeography and perspectives. Quat Sci Rev 30:1630–1648

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Pessoal de Nível Superior (CAPES) for funding this study. (CNPq Grants 312404/2019-0 to JA and 311539/2019-0 to PSR), and Coordenação de Aperfeiçoamento de Pessoal de Nıível Superior—Brasil (CAPES process 88882.444617/2019-01 to LWL and 88881.337398/2019-01 to PSR). The Instituto Ambiental Paraná (IAP) authorized access to the Vila Velha State Park and CEMAVE/ICMBio provided bands and permission for bird captures. We thank Adolfo G. Navarro Siguenza, Carla Suertegaray Fontana, Glayson Ariel Bencke, Luís Fábio Silveira, Helder F. P. de Araújo, Pedro Scherer-Neto, and Pablo L. for access to data on museum specimens or access to collections. We also acknowledge Stephen Ferrari for revising the manuscript. The study is in accordance with the current laws in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilton Willians Luna.

Additional information

Communicated by C. G. Guglielmo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10336_2021_1948_MOESM1_ESM.docx

Supplementary file1 Fig. S1 Map of the occurrence localities of the Sooty Swift used as the input data for the environmental niche modeling. Fig. S2 Sooty Swift's historical niche distribution models, represented in binary values of absence (0–gray area), and presence (1—green areas). Fig. S3 Histogram of Schoener’s D values for the similarity and equivalence tests. A Similarity test comparing the central-southern population and northern population (D = 0.028; p = 0.31). B Similarity test comparing the northern and central-southern populations (D = 0.028; p = 0.34). C Equivalence test comparing the central-southern and northern populations (D = 0.028; p = 0.19), and D Equivalence test comparing the northern and central-southern populations (D = 0.028; p = 0.29). Fig. S4 A Niche overlap of the two populations in the environmental space of the study area (PCA-env). The green shading represents the niche space of the southern population and the red shading, the northern population. Blue represents the overlap of the environmental space between the populations. B Representation of the contribution of the environmental variables (DOCX 752 KB)

Supplementary material 2 (XLSX 30 KB)

Supplementary material 3 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna, L.W., Dias, C., Pichorim, M. et al. Historical climate change as driver of populational range expansion and differentiation in a rare and partially migratory Neotropical bird. J Ornithol 163, 495–507 (2022). https://doi.org/10.1007/s10336-021-01948-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-021-01948-z

Keywords

Navigation