Skip to main content
Log in

Local Heat Treatment of Goat Udders Influences Innate Immune Functions in Mammary Glands

  • Original Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Heat stress and mastitis adversely affect milk production in dairy ruminants. Although the udder temperature is elevated in both conditions, the influence of this local temperature rise on milk production and immune function of ruminant mammary glands remains unclear. To address this question, we heated the mammary glands of goats by covering one half of the udder with a disposable heating pad for 24 h, the other uncovered half served as a control. Sixteen Tokara goats (1–5 parity) and three Shiba goats (1–2 parity) at the mid-lactation stage were individually housed, fed 0.6 kg of hay cubes and 0.2 kg of barley per day, and had free access to water and trace-mineralized salt blocks. Milk samples were collected every 6 h for 24 h after covering (n = 16), and deep mammary gland tissue areas were collected after 24 h (n = 5). The concentrations of antimicrobial components [lactoferrin, β-defensin-1, cathelicidin-2, cathelicidin-7, and immunoglobulin A (IgA)] in milk were measured by the enzyme-linked immunosorbent assay (ELISA). The localization of IgA was examined by immunohistochemistry. The mRNA expression and protein concentrations of C–C motif chemokine ligand-28 (CCL-28) and interleukin (IL)-8 in the mammary gland tissue were measured using quantitative polymerase chain reaction and ELISA, respectively. The somatic cell count in milk was significantly higher in the local heat-treatment group than in the control group after 12 h of treatment. The treatment group had significantly higher concentrations of cathelicidin-2 and IgA than the control group after 24 h of treatment. In addition, the number of IgA-positive cells in the mammary stromal region and the concentration of CCL-28 in the mammary glands were increased by local heat treatment. In conclusion, a local rise in udder temperature enhanced the innate immune function in mammary glands by increasing antimicrobial components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci. 2003;86:2131–44. https://doi.org/10.3168/jds.S0022-0302(03)73803-X.

    Article  CAS  PubMed  Google Scholar 

  2. Bobbo T, Ruegg PL, Stocco G, Fiore E, Gianesella M, Morgante M, et al. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J Dairy Sci. 2017;100:4868–83. https://doi.org/10.3168/jds.2016-12353.

    Article  CAS  PubMed  Google Scholar 

  3. Berman A, Folman Y, Kaim M, Mamen M, Herz Z, Wolfenson D, et al. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. J Dairy Sci. 1985;68:1488–95. https://doi.org/10.3168/jds.S0022-0302(85)80987-5.

    Article  CAS  PubMed  Google Scholar 

  4. Yano M, Shimadzu H, Endo T. Modelling temperature effects on milk production: A study on Holstein cows at a Japanese farm. Springerplus. 2014;3:129. https://doi.org/10.1186/2193-1801-3-129.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sathiyabarathi M, Jeyakumar S, Manimaran A, Pushpadass HA, Sivaram M, Ramesha KP, et al. Investigation of body and udder skin surface temperature differentials as an early indicator of mastitis in Holstein Friesian crossbred cows using digital infrared thermography technique. Vet World. 2016;9:1386–91. https://doi.org/10.14202/vetworld.2016.1386-1391

  6. Hovinen M, Siivonen J, Taponen S, Hänninen L, Pastell M, Aisla AM, et al. Detection of clinical mastitis with the help of a thermal camera. J Dairy Sci. 2008;91:4592–8. https://doi.org/10.3168/jds.2008-1218.

    Article  CAS  PubMed  Google Scholar 

  7. Borellini F, Oka T. Growth control and differentiation in mammary epithelial cells. Environ Health Perspect. 1989;80:85–99. https://doi.org/10.1289/ehp.898085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang YQ, Morimoto K, Hosoda K, Yoshimura Y, Isobe N. Differential immunolocalization between lingual antimicrobial peptide and lactoferrin in mammary gland of dairy cows. Vet Immunol Immunopathol. 2012;145:499–504. https://doi.org/10.1016/j.vetimm.2011.10.017.

    Article  CAS  PubMed  Google Scholar 

  9. Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, et al. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules. 2020;25. https://doi.org/10.3390/molecules25245763

  10. Chanu KV, Thakuria D, Kumar S. Antimicrobial peptides of buffalo and their role in host defenses. Vet World. 2018;11:192–200. https://doi.org/10.14202/vetworld.2018.192-200

  11. Wheeler TT, Smolenski GA, Harris DP, Gupta SK, Haigh BJ, Broadhurst MK, et al. hosts. Host-Defence-related proteins in cows’ milk Animal. 2012;6:415–22. https://doi.org/10.1017/S1751731111002151.

    Article  CAS  PubMed  Google Scholar 

  12. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20. https://doi.org/10.1038/nri1180.

    Article  CAS  PubMed  Google Scholar 

  13. Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011;68:2161–76. https://doi.org/10.1007/s00018-011-0710-x.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang GW, Lai SJ, Yoshimura Y, Isobe N. Expression of cathelicidins mRNA in the goat mammary gland and effect of the intramammary infusion of lipopolysaccharide on milk cathelicidin-2 concentration. Vet Microbiol. 2014;170:125–34. https://doi.org/10.1016/j.vetmic.2014.01.029.

    Article  CAS  PubMed  Google Scholar 

  15. Loor JJ, Moyes KM, Bionaz M. Functional adaptations of the transcriptome to mastitis-causing pathogens: The mammary gland and beyond. J Mammary Gland Biol Neoplasia. 2011;16:305–22. https://doi.org/10.1007/s10911-011-9232-2.

    Article  PubMed  Google Scholar 

  16. Brandtzaeg P. Secretory IgA: Designed for anti-microbial defense. Front Immunol. 2013;4:222. https://doi.org/10.3389/fimmu.2013.00222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niimi K, Usami K, Fujita Y, Abe M, Furukawa M, Suyama Y, et al. Development of immune and microbial environments is independently regulated in the mammary gland. Mucosal Immunol. 2018;11:643–53. https://doi.org/10.1038/mi.2017.90.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med. 2004;200:805–9. https://doi.org/10.1084/jem.20041069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobayashi K, Tsugami Y, Matsunaga K, Suzuki T, Nishimura T. Moderate high temperature condition induces the lactation capacity of mammary epithelial cells through control of STAT3 and STAT5 signaling. J Mammary Gland Biol Neoplasia. 2018;23:75–88. https://doi.org/10.1007/s10911-018-9393-3.

    Article  PubMed  Google Scholar 

  20. Morad H, Luqman S, Tan CH, Swann V, McNaughton PA. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide [Sci. Rep.:2021:11, 9339]

  21. Zierler S, Hampe S, Nadolni W. TRPM channels as potential therapeutic targets against pro-inflammatory diseases. Cell Calcium. 2017;67:105–15. https://doi.org/10.1016/j.ceca.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  22. Inada H, Iida T, Tominaga M. Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun. 2006;350:762–7. https://doi.org/10.1016/j.bbrc.2006.09.111.

    Article  CAS  PubMed  Google Scholar 

  23. Natale VA, McCullough KC. Macrophage culture: Influence of species-specific incubation temperature. J Immunol Methods. 1998;214:165–74. https://doi.org/10.1016/s0022-1759(98)00055-6.

    Article  CAS  PubMed  Google Scholar 

  24. Palackdharry S, Sadd BM, Vogel LA, Bowden RM. The effect of environmental temperature on reptilian peripheral blood B cell functions. Horm Behav. 2017;88:87–94. https://doi.org/10.1016/j.yhbeh.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  25. Günther J, Petzl W, Zerbe H, Schuberth HJ, Koczan D, Goetze L, et al. Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows. BMC Genomics. 2012;13:17. https://doi.org/10.1186/1471-2164-13-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki N, Yuliza Purba F, Hayashi Y, Nii T, Yoshimura Y, Isobe N. Seasonal variations in the concentration of antimicrobial components in milk of dairy cows. Anim Sci J. 2020;91: e13427. https://doi.org/10.1111/asj.13427.

    Article  CAS  PubMed  Google Scholar 

  27. Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 2010;4:1167–83. https://doi.org/10.1017/S175173111000090X.

    Article  CAS  PubMed  Google Scholar 

  28. Isobe N, Matsukawa S, Kubo K, Ueno K, Sugino T, Nii T, Yoshimura Y. Effects of oral administration of colostrum whey in peripartum goat on antimicrobial peptides in postpartum milk. Anim Sci J. 2020;91:e13365. https://doi.org/10.1111/asj.13365.

  29. Purba FY, Ueda J, Nii T, Yoshimura Y, Isobe N. Effects of intrauterine infusion of bacterial lipopolysaccharides on the mammary gland inflammatory response in goats. Vet Immunol Immunopathol. 2020;219: 109972. https://doi.org/10.1016/j.vetimm.2019.109972.

    Article  CAS  PubMed  Google Scholar 

  30. Kuwahara K, Yoshimura Y, Isobe N. Effect of steroid hormones on the innate immune response induced by Staphylococcus aureus in the goat mammary gland. Reprod Domest Anim. 2017;52:579–84. https://doi.org/10.1111/rda.12948.

    Article  CAS  PubMed  Google Scholar 

  31. Matsukawa S, Ueno K, Sugino T, Yoshimura Y, Isobe N. Effects of colostrum whey on immune function in the digestive tract of goats. Anim Sci J. 2018;89:1152–60. https://doi.org/10.1111/asj.13027.

    Article  CAS  PubMed  Google Scholar 

  32. Srisaikham S, Suksombat W, Yoshimura Y, Isobe N. Goat cathelicidin-2 is secreted by blood leukocytes regardless of lipopolysaccharide stimulation. Anim Sci J. 2016;87:423–7. https://doi.org/10.1111/asj.12438.

    Article  CAS  PubMed  Google Scholar 

  33. Isobe N, Nakamura J, Nakano H, Yoshimura Y. Existence of functional lingual antimicrobial peptide in bovine milk. J Dairy Sci. 2009;92:2691–5. https://doi.org/10.3168/jds.2008-1940.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang GW, Lai SJ, Yoshimura Y, Isobe N. Messenger RNA expression and immunolocalization of psoriasin in the goat mammary gland and its milk concentration after an intramammary infusion of lipopolysaccharide. Vet J. 2014;202:89–93. https://doi.org/10.1016/j.tvjl.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  35. Hunziker W, Kraehenbuhl JP. Epithelial transcytosis of immunoglobulins. J Mammary Gland Biol Neoplasia. 1998;3:287–302. https://doi.org/10.1023/a:1018715511178.

    Article  CAS  PubMed  Google Scholar 

  36. Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr. 2010;156(Suppl):S8-15. https://doi.org/10.1016/j.jpeds.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  37. Bowman EP, Kuklin NA, Youngman KR, Lazarus NH, Kunkel EJ, Pan J, et al. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J Exp Med. 2002;195:269–75. https://doi.org/10.1084/jem.20010670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem. 2000;275:22313–23. https://doi.org/10.1074/jbc.M001461200.

    Article  CAS  PubMed  Google Scholar 

  39. Distelhorst K, Voyich J, Wilson E. Partial characterization and distribution of the chemokines CCL25 and CCL28 in the bovine system. Vet Immunol Immunopathol. 2010;138:134–8. https://doi.org/10.1016/j.vetimm.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  40. Mohan T, Deng L, Wang BZ. CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. Int Immunopharmacol. 2017;51:165–70. https://doi.org/10.1016/j.intimp.2017.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ezzat Alnakip M, Quintela-Baluja M, Böhme K, Fernández-No I, Caamaño-Antelo S, Calo-Mata P, et al. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med. 2014;2014: 659801. https://doi.org/10.1155/2014/659801.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Purba FY, Ishimoto Y, Nii T, Yoshimura Y, Isobe N. Effect of temporary cessation of milking on the innate immune components in goat milk. J Dairy Sci. 2021;104:10374–81. https://doi.org/10.3168/jds.2021-20564.

    Article  CAS  PubMed  Google Scholar 

  43. Isobe N, Morimoto K, Nakamura J, Yamasaki A, Yoshimura Y. Intramammary challenge of lipopolysaccharide stimulates secretion of lingual antimicrobial peptide into milk of dairy cows. J Dairy Sci. 2009;92:6046–51. https://doi.org/10.3168/jds.2009-2594.

    Article  CAS  PubMed  Google Scholar 

  44. Purba FY, Nii T, Yoshimura Y, Isobe N. Short communication: Production of antimicrobial peptide S100A8 in the goat mammary gland and effect of intramammary infusion of lipopolysaccharide on S100A8 concentration in milk. J Dairy Sci. 2019;102:4674–81. https://doi.org/10.3168/jds.2018-15396.

    Article  CAS  PubMed  Google Scholar 

  45. Akers RM, Nickerson SC. Mastitis and its impact on structure and function in the ruminant mammary gland. J Mammary Gland Biol Neoplasia. 2011;16:275–89. https://doi.org/10.1007/s10911-011-9231-3.

    Article  PubMed  Google Scholar 

  46. Kiku Y, Ozawa T, Takahashi H, Kushibiki S, Inumaru S, Shingu H, et al. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis. Vet Res Commun. 2017;41:175–82. https://doi.org/10.1007/s11259-017-9684-y.

    Article  PubMed  Google Scholar 

  47. Watanabe A, Yagi Y, Shiono H, Yokomizo Y. Effect of intramammary infusion of tumour necrosis factor-alpha on milk protein composition and induction of acute-phase protein in the lactating cow. J Vet Med B Infect Dis Vet Public Health. 2000;47:653–62. https://doi.org/10.1046/j.1439-0450.2000.00400.x.

    Article  CAS  PubMed  Google Scholar 

  48. Wellnitz O, Arnold ET, Bruckmaier RM. Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland. J Dairy Sci. 2011;94:5405–12. https://doi.org/10.3168/jds.2010-3931.

    Article  CAS  PubMed  Google Scholar 

  49. Bruckmaier RM, Weiss D, Wiedemann M, Schmitz S, Wendl G. Changes of physicochemical indicators during mastitis and the effects of milk ejection on their sensitivity. J Dairy Res. 2004;71:316–21. https://doi.org/10.1017/s0022029904000366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yukinori Yoshimura, Graduate School of Integrated Sciences for Life, Hiroshima University, for his helpful advice on our research.

Funding

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS Kakenhi grant number 18H0232009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Isobe.

Ethics declarations

Ethical Approval

All experiments were approved by the Animal Research Committee of Hiroshima University (no. C14-5).

Competing Interests

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsugami, Y., Ishiba, Y., Suzuki, N. et al. Local Heat Treatment of Goat Udders Influences Innate Immune Functions in Mammary Glands. J Mammary Gland Biol Neoplasia 26, 387–397 (2021). https://doi.org/10.1007/s10911-022-09509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-022-09509-7

Keywords

Navigation