Skip to main content
Log in

A simple globally convergent algorithm for the nonsmooth nonconvex single source localization problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study the single source localization problem which consists of minimizing the squared sum of the errors, also known as the maximum likelihood formulation of the problem. The resulting optimization model is not only nonconvex but is also nonsmooth. We first derive a novel equivalent reformulation as a smooth constrained nonconvex minimization problem. The resulting reformulation allows for deriving a delightfully simple algorithm that does not rely on smoothing or convex relaxations. The proposed algorithm is proven to generate bounded iterates which globally converge to critical points of the original objective function of the source localization problem. Numerical examples are presented to demonstrate the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By the subdifferential \(\partial \varphi \) we mean the limiting subdifferential, which is defined for proper and lower semicontinuous functions by

    $$\begin{aligned} \partial \varphi \left( {\bar{z}}\right) :=\left\{ v : \, \exists v^{k} \rightarrow v \text{ and } z^{k} \mathop {\rightarrow }\limits ^{\varphi } {\bar{z}} \text{ such } \text{ that } \varphi \left( z \right) \ge \varphi \left( z^{k}\right) + \left\langle {v^{k} , z - z^{k}} \right\rangle + o(|z - z^{k}|) \right\} . \end{aligned}$$

    When \(\varphi \) is convex, the above definition coincides with the subdifferential of convex analysis. For more details see [23].

References

  1. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2, Ser. B), 5–16 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1–2, Ser. A), 91–129 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, A., Pan, D.: On the solution of the GPS localization and circle fitting problems. SIAM J. Optim. 22(1), 108–134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beck, A., Stoica, P., Li, J.: Exact and approximate solutions of source localization problems. IEEE Trans. Signal Process. 56(5), 1770–1778 (2008)

    Article  MathSciNet  Google Scholar 

  6. Beck, A., Teboulle, M., Chikishev, Z.: Iterative minimization schemes for solving the single source localization problem. SIAM J. Optim. 19(3), 1397–1416 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biswas, P., Liang, T.C., Toh, K.C., Wang, T.C., Ye, Y.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng. 3, 360–371 (2006)

    Article  Google Scholar 

  8. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)

    Article  MATH  Google Scholar 

  10. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2, Ser. A), 459–494 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bolte, J., Nguyen, T.P., Peypouquet, J.: From error bounds to the complexity of first-order descent methods for convex functions. Math. Program. (2016). doi:10.1007/s10107-016-1091-6

  12. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  13. Cheung, K.W., So, H.C., Ma, W.-K., Chan, Y.T.: Least squares algorithms for time-of-arrival-based mobile location. IEEE Trans. Signal Process. 52(4), 1121–1128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freschi, F.: Localization of sources of brain activity: a MILP approach. IEEE Trans. Magn. 46(8), 3429–3432 (2010)

    Article  Google Scholar 

  15. Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas–Rachford for sparse affine feasibility. IEEE Trans. Signal Process. 62(18), 4868–4881 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim. 20(1), 192–215 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48(3), 769–783 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations aux Dérivées Partielles (Paris, 1962), pp. 87–89. Éditions du Centre National de la Recherche Scientifique, Paris (1963)

  20. Lombard, A., Zheng, Y., Buchner, H., Kellermann, W.: Tdoa estimation for multiple sound sources in noisy and reverberant environments using broadband independent component analysis. IEEE Trans Audio Speech 19(6), 1490–1503 (2011)

    Article  Google Scholar 

  21. Luke, D.R., Thao, N.H., Tam, M.T.: Quantitative convergence analysis of iterated expansive, set-valued mappings (2016). arXiv:1563306

  22. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  23. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundl, vol. 317. Math. Wiss. Springer, Berlin (1998)

  24. Stoica, P., Li, J.: Source localization from range-difference measurements. IEEE Signal Process. Mag. 23(6), 63–66 (2006)

    Article  Google Scholar 

  25. Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19, 655–673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoham Sabach.

Additional information

Supported by a GIF Grant G-1253-304.6/2014. Partially supported by the Israel Science Foundation, ISF Grant 998/12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, D.R., Sabach, S., Teboulle, M. et al. A simple globally convergent algorithm for the nonsmooth nonconvex single source localization problem. J Glob Optim 69, 889–909 (2017). https://doi.org/10.1007/s10898-017-0545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0545-6

Keywords

Mathematics Subject Classification

Navigation