Skip to main content
Log in

In-Depth Assessment of the Effect of Sodium Azide on the Optical Properties of Dissolved Organic Matter

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Treatment and preservation of samples are critical issues in measuring the optical properties of dissolved organic matter (DOM) due to their high sensitivity to physical and chemical changes upon sample handling. In this study, we rigorously assessed the potential interferences of sodium azide (NaN3) on DOM absorption and fluorescence. A wide range of different samples were poisoned with varying NaN3 concentrations. Several commonly used optical parameters derived from absorbance and fluorescence spectroscopy were compared at different samples and conditions to assess the interfering effect of NaN3. Our results showed that NaN3 altered the original features of absorbance and fluorescence even at the lowest level of the addition. The absorption coefficients of NaN3-treated samples increased up to 2608% at 254 nm and 66% at 280 nm relative to the untreated control. Fluorescence data revealed both a quenching effect and an enhancement in fluorescence. The effect of NaN3 on fluorescence was highly variable and affected by the NaN3 concentrations added, and the sources and the concentrations of DOM samples. None of these factors exhibited a clear linear behavior with NaN3 levels, making it difficult to develop a correction method. It can be recommended from the findings not to use NaN3 in preserving DOM samples for optical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Catalá TS, Reche I, Fuentes-Lema A et al (2015) Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat Commun 6:5986. https://doi.org/10.1038/ncomms6986

    Article  CAS  PubMed  Google Scholar 

  2. Lambert T, Bouillon S, Darchambeau F et al (2016) Shift in the chemical composition of dissolved organic matter in the Congo River network. Biogeosciences 13:5405–5420. https://doi.org/10.5194/bg-13-5405-2016

    Article  CAS  Google Scholar 

  3. Chen M, Jaffé R (2014) Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Res 61:181–190. https://doi.org/10.1016/j.watres.2014.03.075

    Article  CAS  PubMed  Google Scholar 

  4. Burdige DJ, Kline SW, Chen W (2004) Fluorescent dissolved organic matter in marine sediment pore waters. Mar Chem 89:289–311. https://doi.org/10.1016/j.marchem.2004.02.015

    Article  CAS  Google Scholar 

  5. Zhang Y, Gao G, Shi K et al (2014) Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu, China. Atmos Environ 98:483–491. https://doi.org/10.1016/J.ATMOSENV.2014.09.038

    Article  CAS  Google Scholar 

  6. Jørgensen L, Stedmon CA, Kragh T et al (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:139–148. https://doi.org/10.1016/j.marchem.2011.05.002

    Article  CAS  Google Scholar 

  7. Makarewicz A, Kowalczuk P, Sagan S et al (2018) Characteristics of chromophoric and fluorescent dissolved organic matter in the Nordic seas. Ocean Sci 14:543–562. https://doi.org/10.5194/os-14-543-2018

    Article  CAS  Google Scholar 

  8. Yang L, Hur J (2014) Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources. Water Res 59:80–89. https://doi.org/10.1016/J.WATRES.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  9. Baghoth SA, Sharma SK, Amy GL (2011) Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC. Water Res 45:797–809. https://doi.org/10.1016/J.WATRES.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Derrien M, Yang L, Hur J (2017) Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: a review. Water Res 112:58–71

    Article  CAS  Google Scholar 

  11. Luek JL, Thompson KE, Larsen RK et al (2017) Sulfate reduction in sediments produces high levels of Chromophoric dissolved organic matter. Sci Rep 7:8829. https://doi.org/10.1038/s41598-017-09223-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Retelletti Brogi S, Gonnelli M, Vestri S, Santinelli C (2015) Biophysical processes affecting DOM dynamics at the Arno river mouth (Tyrrhenian Sea). Biophys Chem 197:1–9

    Article  CAS  Google Scholar 

  13. Korak JA, Dotson AD, Summers RS, Rosario-Ortiz FL (2014) Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter. Water Res 49:327–338. https://doi.org/10.1016/j.watres.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  14. Martínez-Pérez AM, Nieto-Cid M, Osterholz H et al (2017) Linking optical and molecular signatures of dissolved organic matter in the Mediterranean Sea. Sci Rep 7:3436. https://doi.org/10.1038/s41598-017-03735-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mannino A, Russ ME, Hooker SB (2008) Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. middle Atlantic bight. J Geophys Res 113:C07051. https://doi.org/10.1029/2007JC004493

    Article  CAS  Google Scholar 

  16. Matsuoka A, Hooker SB, Bricaud A et al (2013) Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space. Biogeosciences 10:917–927. https://doi.org/10.5194/bg-10-917-2013

    Article  CAS  Google Scholar 

  17. Carstea EM, Bridgeman J, Baker A, Reynolds DM (2016) Fluorescence spectroscopy for wastewater monitoring: a review. Water Res 95:205–219. https://doi.org/10.1016/j.watres.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  18. Weishaar J, Aiken G, Bergamaschi B et al (2003) Evaluation of specific ultra-violet absorbance as an indicator of the chemical content of dissolved organic carbon. Environ Sci Technol 37:4702–4708. https://doi.org/10.1021/es030360x

    Article  CAS  PubMed  Google Scholar 

  19. Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969. https://doi.org/10.4319/lo.2008.53.3.0955

    Article  Google Scholar 

  20. Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol Oceanogr 57:1453–1466. https://doi.org/10.4319/lo.2012.57.5.1453

    Article  CAS  Google Scholar 

  21. Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC Anal Methods 5:6557. https://doi.org/10.1039/c3ay41160e

    Article  CAS  Google Scholar 

  22. Zsolnay A, Baigar E, Jimenez M (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50

    Article  CAS  Google Scholar 

  23. Huguet a, Vacher L, Relexans S et al (2009) Properties of fluorescent dissolved organic matter in the Gironde estuary. Org Geochem 40:706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002

    Article  CAS  Google Scholar 

  24. McKnight DM, Boyer EW, Westerhoff PK et al (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48. https://doi.org/10.4319/lo.2001.46.1.0038

    Article  CAS  Google Scholar 

  25. Aiken G (2014) Fluorescence and dissolved organic matter: a chemist’s perspective. In: Aquatic Organic Matter Fluorescence. pp 35–74

  26. Spencer RGM, Coble PG (2014) Sampling design for organic matter fluorescence analysis. In: Aquatic organic matter fluorescence. pp 125–146

  27. Fellman JB, D’Amore DV, Hood E (2008) An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Sci Total Environ 392:305–312. https://doi.org/10.1016/j.scitotenv.2007.11.027

    Article  CAS  PubMed  Google Scholar 

  28. Patel-Sorrentino N, Mounier S, Benaim JY (2002) Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res 36:2571–2581. https://doi.org/10.1016/S0043-1354(01)00469-9

    Article  CAS  PubMed  Google Scholar 

  29. Spencer RGMM, Bolton L, Baker A (2007) Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Res 41:2941–2950. https://doi.org/10.1016/j.watres.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  30. Chang S, Lamm SH (2003) Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol 22:175–186

    Article  CAS  Google Scholar 

  31. Kaplan LA (1994) A field and laboratory procedure to collect, process, and preserve freshwater samples for dissolved organic carbon analysis. Limnol Oceanogr 39:1470–1476

    Article  CAS  Google Scholar 

  32. Porcal P, Hejzlar J, Kopéček J (2004) Seasonal and photochemical changes of DOM in an acidified forest lake and its tributaries. Aquat Sci 66:211–222. https://doi.org/10.1007/s00027-004-0701-1

    Article  CAS  Google Scholar 

  33. Xue S, Zhao Q-L, Wei L-L, Ren N-Q (2009) Behavior and characteristics of dissolved organic matter during column studies of soil aquifer treatment. Water Res 43:499–507. https://doi.org/10.1016/J.WATRES.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  34. Black FJ, Poulin BA, Flegal AR (2012) Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim Cosmochim Acta 84:492–507. https://doi.org/10.1016/j.gca.2012.01.019

    Article  CAS  Google Scholar 

  35. Yeh Y-L, Yeh K-J, Hsu L-F et al (2014) Use of fluorescence quenching method to measure sorption constants of phenolic xenoestrogens onto humic fractions from sediment. J Hazard Mater 277:27–33. https://doi.org/10.1016/J.JHAZMAT.2014.03.057

    Article  CAS  PubMed  Google Scholar 

  36. Clark CD, De Bruyn WJ, Aiona PD (2016) Temporal variation in optical properties of chromophoric dissolved organic matter (CDOM) in Southern California coastal waters with nearshore kelp and seagrass. Limnol Oceanogr 61:32–46. https://doi.org/10.1002/lno.10198

    Article  CAS  Google Scholar 

  37. Lee MH, Osburn CL, Shin KH, Hur J (2018) New insight into the applicability of spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes. Water Res 147:164–176. https://doi.org/10.1016/j.watres.2018.09.048

    Article  CAS  PubMed  Google Scholar 

  38. Ferrari GM, Dowell MD, Grossi S, Targa C (1996) Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region. Mar Chem 55:299–316. https://doi.org/10.1016/S0304-4203(96)00061-8

    Article  Google Scholar 

  39. Astoreca R, Rousseau V, Lancelot C (2009) Coloured dissolved organic matter (CDOM) in Southern North Sea waters: optical characterization and possible origin. Estuar Coast Shelf Sci 85:633–640. https://doi.org/10.1016/J.ECSS.2009.10.010

    Article  CAS  Google Scholar 

  40. Park M, Snyder SA (2018) Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere 193:530–537. https://doi.org/10.1016/J.CHEMOSPHERE.2017.11.069

    Article  CAS  PubMed  Google Scholar 

  41. Pisani O, Yamashita Y, Jaffé R (2011) Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool. Water Res 45:3836–3844. https://doi.org/10.1016/j.watres.2011.04.035

    Article  CAS  PubMed  Google Scholar 

  42. Parr TB, Ohno T, Cronan CS, Simon KS (2014) ComPARAFAC: a library and tools for rapid and quantitative comparison of dissolved organic matter components resolved by parallel factor analysis. Limnol Oceanogr Methods 12:114–125. https://doi.org/10.4319/lom.2014.12.114

    Article  CAS  Google Scholar 

  43. Kitis M, Karanfil T, Kilduff JE (2004) The reactivity of dissolved organic matter for disinfection by-product formation. Turk J Eng Environ Sci 28:167–179

    CAS  Google Scholar 

  44. Kaplan Bekaroglu SS, Yigit NO, Harman BI, Kitis M (2016) Hybrid adsorptive and oxidative removal of natural organic matter using Iron oxide-coated pumice particles. J Chem 2016:1–8. https://doi.org/10.1155/2016/3108034

    Article  CAS  Google Scholar 

  45. Hu S, Wu Y, Yi N et al (2017) Chemical properties of dissolved organic matter derived from sugarcane rind and the impacts on copper adsorption onto red soil. Environ Sci Pollut Res 24:21750–21760. https://doi.org/10.1007/s11356-017-9834-3

    Article  CAS  Google Scholar 

  46. Murphy KR, Stedmon CA, Wenig P, Bro R (2014) OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment. Anal Methods 6:658–661. https://doi.org/10.1039/C3AY41935E

    Article  CAS  Google Scholar 

  47. McDonald JR, Rabalais JW, McGlynn SP (1970) Electronic spectra of the Azide ion, Hydrazoic acid, and azido molecules. J Chem Phys 52:1332–1340. https://doi.org/10.1063/1.1673134

    Article  CAS  Google Scholar 

  48. Norman L, Thomas DN, Stedmon CA et al (2011) The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic Sea ice. Deep Sea Res II Top Stud Oceanogr 58:1075–1091. https://doi.org/10.1016/j.dsr2.2010.10.030

    Article  CAS  Google Scholar 

  49. Ortega-Retuerta E, Reche I, Pulido-Villena E et al (2010) Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic peninsula (Southern Ocean). Mar Chem 118:129–139. https://doi.org/10.1016/j.marchem.2009.11.008

    Article  CAS  Google Scholar 

  50. Wozniak B, Dera J (2007) Light absorption in sea water

  51. Mounier S, Zhao H, Garnier C, Redon R (2011) Copper complexing properties of dissolved organic matter: PARAFAC treatment of fluorescence quenching. Biogeochemistry 106:107–116. https://doi.org/10.1007/s10533-010-9486-6

    Article  Google Scholar 

  52. Poulin BA, Ryan JN, Aiken GR (2014) Effects of iron on optical properties of dissolved organic matter. Environ Sci Technol 48:10098–10106. https://doi.org/10.1021/es502670r

    Article  CAS  PubMed  Google Scholar 

  53. Lakowicz JR (2006) Quenching of fluorescence. In: Principles of fluorescence spectroscopy. pp 277–330

  54. Watkins AR (1973) Quenching of biphenyl fluorescence by inorganic ions. J Phys Chem 77:1207–1210. https://doi.org/10.1021/j100629a005

    Article  CAS  Google Scholar 

  55. Shizuka H, Nakamura M, Morita T (1980) Anion-induced fluorescence quenching of aromatic molecules. J Phys Chem 84:989–994. https://doi.org/10.1021/j100446a012

    Article  CAS  Google Scholar 

  56. Reszka K, Hall RD, Chignell CF (1984) Quenching of the excited states of 2-phenylbenzoxazole by azide anion. Fluorescence and ESR study. Photochem Photobiol 40:707–714. https://doi.org/10.1111/j.1751-1097.1984.tb04641.x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grants, and was funded by the Korean government (MSIP) (No. 2017R1A4A1015393 and 2017033546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Retelletti Brogi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retelletti Brogi, S., Derrien, M. & Hur, J. In-Depth Assessment of the Effect of Sodium Azide on the Optical Properties of Dissolved Organic Matter. J Fluoresc 29, 877–885 (2019). https://doi.org/10.1007/s10895-019-02398-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02398-w

Keywords

Navigation