Skip to main content
Log in

Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Phytochemical defense responses of plants are often herbivore-specific and can be affected by a herbivore’s feeding mode. However, comprehensive studies documenting the impact of multiple herbivores from different feeding guilds on induced phytochemical responses in distal leaves and its consequences for plant-mediated herbivore interactions are limited and findings are inconsistent. We investigated how herbivory by leaf-chewing caterpillars, cell-content feeding spider mites and phloem-feeding aphids and whiteflies affect secondary metabolomes and phytohormone levels in youngest, non-damaged cotton leaves (distal leaves). Furthermore, bioassays with caterpillars were conducted to assess their performance on distal leaves of plants infested with different herbivores. Caterpillars, and to a lesser degree spider mites, led to a systemic induction of terpenoids with negative consequences for caterpillar performance in the bioassays. Both herbivores reduced levels of various nutrients and potentially antioxidative compounds. Caterpillar damage increased levels of jasmonoyl-L-isoleucine and abscisic acid (ABA), whereas spider mite infestation had no effect on phytohormone levels. Aphid and whitefly infestation did not systemically affect secondary metabolites. Aphids decreased salicylic acid levels while whitefly-infested plants contained increased ABA levels. Neither aphid nor whitefly infestation affected caterpillar performance. In general, feeding mode of a herbivore can affect systemically induced changes in phytochemistry and plant-mediated indirect interactions even though the two phloem-feeding herbivores triggered different phytohormonal responses. The observed reduction of nutrients and potentially antioxidative compounds upon caterpillar and spider mite herbivory underlines the importance of further elucidating the role of resource sequestration as a potential systemic defensive response following herbivory by chewers and cell-content feeding herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We thank Laurence Lachat and Sara D’Alessio for technical support, Simone Haller for the scientific illustrations, the Monsanto Company (St. Louis, USA) for the provision of the plant material and Kerry Mauck (ETH Zurich) and Syngenta (Stein, Switzerland) for providing arthropods. This research was supported by the Swiss National Science Foundation (SNF grant no. 31003A-149794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Romeis.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisenring, M., Glauser, G., Meissle, M. et al. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. J Chem Ecol 44, 1178–1189 (2018). https://doi.org/10.1007/s10886-018-1015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-018-1015-4

Keywords

Navigation