Skip to main content
Log in

Development of Protein Capped Nano Gold for NIR Photothermal and Molecular Imaging Applications for Diagnosis of Cancer Cells: In Vitro Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current work demonstrated an in vitro model of diastase capped gold nanoparticles (Au NPs) and nanoplates (Au NPts) as unique contrast agents for molecular imaging and photothermal cancer therapy, respectively. The Au NPs/Au NPts were fabricated and conjugated with monoclonal antibodies of anti-epidermal growth factor receptor (anti-EGFR). Anti-EGFR-AuNPs bioconjugate was studied for molecular imaging allowing to interact with the nasopharyngeal carcinoma (CNE2 cells). Confocal immunofluorescence microscopic results revealed the increased scattering and reflectance properties of CNE2 cells after attachment and localization of Anti-EGFR-AuNPs bioconjugate on the cell surface, consequently providing the good optical contrast for the cancer cell imaging. On the other hand, Anti-EGFR-Au NPts were studied for photothermal applications using two malignant oral epithelial cell lines (HSC 3 and HOC 313 clone 8) and a nonmalignant epithelial cell line (HaCat), which revealed that the malignant cells require almost half of the laser energy to be photothermally eliminated after exposure to continuous red laser at 800 nm when compared with the nonmalignant cells. Further, the present approach may have potential for development of NPs for selective photothermal therapy and a successful diagnostics of cancer cell for bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. I. H. El-Sayed, X. Huang, and M. A. El-Sayed (2005). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135.

    Article  Google Scholar 

  2. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711.

    Article  CAS  Google Scholar 

  3. R. Weissleder (2001). A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317.

    Article  CAS  Google Scholar 

  4. N. W. Shi Kam, M. O’Connell, J. A. Wisdom, and H. Dai (2005). Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102, 11600–11605.

    Article  Google Scholar 

  5. E. Hao and G. C. Schatz (2004). Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366.

    Article  CAS  Google Scholar 

  6. E. Hao, G. C. Schatz, and J. T. Hupp (2004). Synthesis and optical properties of anisotropic metal nanoparticles. J. Fluoresc. 14, 331–341.

    Article  CAS  Google Scholar 

  7. F. Koenig, J. Knittel, and H. Stepp (2001). Diagnosing cancer in vivo. Science 292, 1401–1403.

    Article  CAS  Google Scholar 

  8. K. Sokolov, J. Aaron, et al. (2003). Optical systems for in vivo molecular imaging of cancer. Technol. Cancer Res. Treat. 2, 491–504.

    Article  CAS  Google Scholar 

  9. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum (2003). Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004.

    CAS  PubMed  Google Scholar 

  10. P. Mulvaney (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800.

    Article  CAS  Google Scholar 

  11. W. D. Geoghegan and G. A. Ackerman (1977). Adsorption of horseradish peroxidase, ovomucoid, and antiimmunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin, and goat anti-human immunoglobulin G on cell surfaces at the electron microscope level: a new method, theory, and application. J. Histochem. Cytochem. 25, 1187–1200.

    Article  CAS  Google Scholar 

  12. D. M. Shin, J. Y. Ro, W. K. Hong, and W. N. Hittelman (1994). Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 54, 3153–3159.

    CAS  PubMed  Google Scholar 

  13. I. H. El-Sayed, X. Huang, and M. A. El-Sayed (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834.

    Article  CAS  Google Scholar 

  14. J. C. Kah, C. J. Sheppard, C. G. Lee, M. C. Olivo, Application of antibody-conjugated gold nanoparticles for optical molecular imaging of epithelial carcinoma cells. in Nanobiophotonics and Biomedical Applications III (International Society for Optics and Photonics, 2006), p. 609503.

  15. M. J. Abrams and B. A. Murrer (1993). Metal compounds in therapy and diagnosis. Science 261, 725–730.

    Article  CAS  Google Scholar 

  16. M. Sireesh Babu, M. Badal Kumar, R. Shivendu, and D. Nandita (2015). Diastase assisted green synthesis of size controllable gold nanoparticles. RSC Adv. 5, 26727.

    Article  Google Scholar 

  17. A. M. E. Nouri, C. Thompson, H. Cannell, M. Symes, S. Purkiss, and Z. Amirghofran (2000). Profile of epidermal growth factor receptor (EGFr) expression in human malignancies: effects of exposure to EGF and its biological influence on established human tumor cell lines. Int. J. Mol. Med. 6, 495–500.

    CAS  PubMed  Google Scholar 

  18. S. B. Maddinedi, B. K. Mandal, and K. K. Anna (2017). Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase. Environ. Toxicol. Pharmacol. 49, 131–136.

    Article  CAS  Google Scholar 

  19. A. J. Shnoudeh, I. Hamad, R. W. Abdo, L. Qadumii, A. Y. Jaber, H. S. Surchi, and S. Z. Alkelany, Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and Bionanotechnology. (Academic Press, Boca Raton, 2019), pp. 527–612.

    Google Scholar 

  20. R. S. Herbst and D. M. Shin (2002). Monoclonal antibodies to target epidermal growth factor receptor–positive tumors. Cancer 94, 1593–1611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Wisdom Health care Institute, Chongqing City Management College, Chongqing for their support for this research work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramu Jarubula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Research Involving Human and/or Animal rights

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, K., Murakonda, G.K. & Jarubula, R. Development of Protein Capped Nano Gold for NIR Photothermal and Molecular Imaging Applications for Diagnosis of Cancer Cells: In Vitro Studies. J Clust Sci 33, 2643–2650 (2022). https://doi.org/10.1007/s10876-021-02179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02179-1

Keywords

Navigation