Skip to main content

Advertisement

Log in

Inborn Errors of Immunity—the Sri Lankan Experience 2010–2022

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Inborn errors of immunity (IEI) are typically monogenic. Data from the Indian subcontinent are relatively scarce. This paper evaluates IEI diagnosed in Sri Lanka.

Methods

Data of patients diagnosed with IEI from 2010 to 2022 at the Department of Immunology, Medical Research Institute, Colombo, Sri Lanka, were retrospectively analyzed.

Results

Two hundred and six patients were diagnosed with IEI, with a prevalence of 0.94 per 100,000. The onset of disease was below 12 years in 84.9%, whereas in 10.9%, it was after 18 years. The male: female ratio was 1.78:1. Consanguinity was identified in 26.6%. IEI were found in all but one (bone marrow failure) of the 10 IUIS categories. Predominantly antibody deficiencies were the most common category among the nine identified (30.1%), followed by combined immune deficiencies with syndromic features (21.3%), immunodeficiencies affecting cellular and humoral immunity (19.9%), congenital defects of phagocyte number or function (13.1%), and defects in intrinsic and innate immunity (8.2%). Severe combined immune deficiency (SCID) was the commonest disease (14.6%), followed by chronic granulomatous disease (CGD) (10.6%) and X linked agammaglobulinemia (8.7%). Of the patients with a known outcome (n = 184), 51 died (27.7%). Mortality rates were high in SCID (83.3%), Omenn syndrome (OS) (100%), and CGD (31.8%) patients.

Conclusion

IEI in Sri Lanka are diagnosed mainly in childhood. The low diagnosis rates suggest a need for educating clinicians regarding IEI in adulthood. The high mortality rates associated with some IEI indicate the need of transplant services in the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

References

  1. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42(7):1473–507. https://doi.org/10.1007/s10875-022-01289-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Notarangelo LD, Bacchetta R, Casanova JL, Su HC. Human inborn errors of immunity: an expanding universe. Sci Immunol. 2020;5(49):eabb1662. https://doi.org/10.1126/sciimmunol.abb1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spaan AN, Neehus AL, Laplantine E, Staels F, Ogishi M, Seeleuthner Y, et al. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science. 2022;376(6599):eabm6380. https://doi.org/10.1126/science.abm6380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Quinn J, Modell V, Orange JS, Modell F. Growth in diagnosis and treatment of primary immunodeficiency within the global Jeffrey Modell Centers Network. Allergy Asthma Clin Immunol. 2022;18(1):19. https://doi.org/10.1186/s13223-022-00662-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Silva NR, Gunawardena S, Rathnayake D, Wickramasingha GD. Spectrum of primary immunodeficiency disorders in Sri Lanka. Allergy Asthma Clin Immunol. 2013;9(1):50. https://doi.org/10.1186/1710-1492-9-50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pan-Hammarstrom Q, Hammarstrom L. Antibody deficiency diseases. Eur J Immunol. 2008;38(2):327–33. https://doi.org/10.1002/eji.200737927.

    Article  CAS  PubMed  Google Scholar 

  7. Bousfiha AA, Jeddane L, Ailal F, et al. Primary immunodeficiency diseases worldwide: more common than generally thought. J Clin Immunol. 2013;33(1):1–7. https://doi.org/10.1007/s10875-012-9751-7.

    Article  PubMed  Google Scholar 

  8. Aluri J, Desai M, Gupta M, Dalvi A, Terance A, Rosenzweig SD, et al. Clinical, immunological, and molecular findings in 57 patients with severe combined immunodeficiency (SCID) from India. Front Immunol. 2019;10:23. https://doi.org/10.3389/fimmu.2019.00023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vignesh P, Rawat A, Kumrah R, Singh A, Gummadi A, Sharma M, Kaur A, et al. Clinical, immunological, and molecular features of severe combined immune deficiency: a multi-institutional experience from India. Front Immunol. 2021;11:619146. https://doi.org/10.3389/fimmu.2020.619146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vorsteveld EE, Hoischen A, van der Made CI. Next-generation sequencing in the field of primary immunodeficiencies: current yield, challenges, and future perspectives. Clin Rev Allergy Immunol. 2021;61(2):212–25. https://doi.org/10.1007/s12016-021-08838-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. ESID - European Society for immunodeficiencies. Available at: https://esid.rg/Education/Diagnostic-Criteria-PID. Accessed 13 Jun 2022.

  12. Feinberg J, Fieschi C, Doffinger R, Feinberg M, Leclerc T, Boisson-Dupuis S, Picard C, et al. Bacillus Calmette Guerin triggers the IL-12/IFN-gamma axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. Eur J Immunol. 2004;34(11):3276–84. https://doi.org/10.1002/eji.200425221.

    Article  CAS  PubMed  Google Scholar 

  13. Fernando SJA, Faiz NM, Handunnetti SM, De Silva AD, Dasanayake WMDK, Wickramasinghe GD, Karunatilake RMCH, et al. Preliminary study on chronic granulomatous disease in Sri Lanka. Allergy Asthma Clin Immunol. 2018;14:37. https://doi.org/10.1186/s13223-018-0264-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Silva R, Dasanayake D, Senanayake M, Ediriweera R, Dias S, Karunatilleke C, Brocas K, et al. Hyper IgE recurrent infection syndrome in South Asia: is there a different outcome? Allergy Asthma Clin Immunol. 2018;14:70. https://doi.org/10.1186/s13223-018-0292-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradley LA, Sweatman AK, Lovering RC, Jones AM, Morgan G, Levinsky RJ, Kinnon C. Mutation detection in the X-linked agammaglobulinemia gene, BTK, using single strand conformation polymorphism analysis. Hum Mol Genet. 1994;3(1):79–83. https://doi.org/10.1093/hmg/3.1.79.

    Article  CAS  PubMed  Google Scholar 

  16. McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine. 2011;90(1):1–18. https://doi.org/10.1097/MD.0b013e318206046.

    Article  PubMed  Google Scholar 

  17. Abd Hamid IJ, Azman NA, Gennery AR, Mangantig E, Hashim IF, Zainudeen ZT. Systematic review of primary immunodeficiency diseases in Malaysia: 1979–2020. Front Immunol. 2020;11:1923. https://doi.org/10.3389/fimmu.2020.0192.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mukhina AA, Kuzmenko NB, Rodina YA, Kondratenko IV, Bologov AA, Latysheva TV, Prodeus AP, et al. Primary immunodeficiencies in Russia: data from the National Registry. Front Immunol. 2020;11:1491. https://doi.org/10.3389/fimmu.2020.01491.PMID:32849507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belaid B, Mahammed L, Drali O, Oussaid AM, Touri NS, Melzi S, Dehimi A, et al. Inborn errors of immunity in Algerian children and adults: a single-center experience over a period of 13 years (2008–2021). Front Immunol. 2022;13:900091. https://doi.org/10.3389/fimmu.2022.90009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Helou SM, Biegner AK, Bode S, Ehl SR, Heeg M, Maccari ME, Ritterbusch H, et al. The German national registry of primary immunodeficiencies (2012–2017). Front Immunol. 2019;10:1272. https://doi.org/10.3389/fimmu.2019.01272.

    Article  PubMed  PubMed Central  Google Scholar 

  21. The French national registry of primary immunodeficiency diseases. Clin Immunol. 2010;135:264–72. https://doi.org/10.1016/j.clim.2010.02.021).

    Article  Google Scholar 

  22. Lougaris V, Pession A, Baronio M, Soresina A, Rondelli R, Gazzurelli L, Benvenuto A, et al. The Italian registry for primary immunodeficiencies (Italian Primary Immunodeficiency Network; IPINet): Twenty Years of Experience (1999–2019). J Clin Immunol. 2020;40(7):1026–37. https://doi.org/10.1007/s10875-020-00844-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shillitoe B, Bangs C, Guzman D, Gennery AR, Longhurst HJ, Slatter M, Edgar DM. The United Kingdom primary immune deficiency (UKPID) registry 2012 to 2017. Clin Exp Immunol. 2018;192(3):284–91. https://doi.org/10.1111/cei.13125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waleed AH, Al-Ahmad M, Al-Khabaz A, Husain A, Sadek A, Othman Y. The Kuwait national primary immunodeficiency registry 2004–2018. Front Immunol. 2019;10:1754. https://doi.org/10.3389/fimmu.2019.01754).

    Article  Google Scholar 

  25. USNET https://usidnet.org/registry-data/stats-registry-enrollment/. Accessed 4 Jan 2023.

  26. Abolhassani H, Kiaee F, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Yazdani R, et al. Fourth update on the Iranian national registry of primary immunodeficiencies: integration of molecular diagnosis. J Clin Immunol. 2018;38(7):816–32. https://doi.org/10.1007/s10875-.

    Article  PubMed  Google Scholar 

  27. Al-Saud B, Al-Mousa H, Al Gazlan S, Al-Ghonaium A, Arnaout R, Al-Seraihy A, Elshorbagi S, et al. Primary immunodeficiency diseases in Saudi Arabia: a tertiary care hospital experience over a period of three years (2010–2013). J Clin Immunol. 2015;35(7):651–60. https://doi.org/10.1007/s10875-015-0197-6.

    Article  PubMed  Google Scholar 

  28. Aghamohammadi A, Rezaei N, Yazdani R, Delavari S, Kutukculer N, Topyildiz E, et al. Consensus Middle East and North Africa registry on inborn errors of immunity. J Clin Immunol. 2021;41:1339–51. https://doi.org/10.1007/s10875-021-01053-z.

    Article  PubMed  PubMed Central  Google Scholar 

  29. El Hawary RE, Meshaal SS, Abd Elaziz DS, Alkady R, Lotfy S, Eldash A, Erfan A, Chohayeb EA, Saad MM, Darwish RK, Boutros JA, Galal NM, Elmarsafy AM. Genetic testing in Egyptian patients with inborn errors of immunity: a single-center experience. J Clin Immunol. 2022;42(5):1051–70. https://doi.org/10.1007/s10875-022-01272-y.

    Article  CAS  PubMed  Google Scholar 

  30. Premawardhena AP, De Silva ST, Goonatilleke MDDC, Ediriweera DS, Mettananda S, Rexan BK, Rodrigo P, et al. Marriage patterns in Sri Lanka and the prevalence of parental consanguinity in patients with β-thalassemia: a cross-sectional descriptive analysis. J Biosoc Sci. 2020;52(4):573–84. https://doi.org/10.1017/S0021932019000658.

    Article  PubMed  Google Scholar 

  31. Gathmann B, Binder N, Ehl S, Kindle G. ESID Registry Working Party. The European internet-based patient and research database for primary immunodeficiencies: update 2011. Clin Exp Immunol. 2012;167(3):479–91. https://doi.org/10.1111/j.1365-2249.2011.04542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benhsaien I, Ailal F, El Bakkouri J, Jeddane L, Ouair H, Admou B, Bouskraoui M, et al. Clinical and immunological features of 96 Moroccan children with SCID phenotype: two decades’ experience. J Clin Immunol. 2021;41(3):631–8. https://doi.org/10.1007/s10875-020-00960-x.

    Article  PubMed  Google Scholar 

  33. Stephan JL, Vlekova V, Le Deist F, Blanche S, Donadieu J, De Saint-Basile G, Durandy A, et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J Pediatr. 1993;123(4):564–72. https://doi.org/10.1016/s0022-3476(05)80951-5.

    Article  CAS  PubMed  Google Scholar 

  34. Michos A, Tzanoudaki M, Villa A, Giliani S, Chrousos G, Kanariou M. Severe combined immunodeficiency in Greek children over a 20-year period: rarity of γ cchain deficiency (X-Linked) type. J Clin Immunol. 2011;31(5):778–83. https://doi.org/10.1007/s10875-011-9564-0.

    Article  PubMed  Google Scholar 

  35. Fazlollahi MR, Pourpak Z, Hamidieh AA, Movahedi M, Houshmand M, Badalzadeh M, Nourizadeh M, et al. Clinical, laboratory, and molecular findings for 63 patients with severe combined immunodeficiency:a decade’s experience. J Investig Allergol Clin Immunol. 2017;27(5):299–304. https://doi.org/10.18176/jiaci.0147.

    Article  CAS  PubMed  Google Scholar 

  36. van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, Español T, Fischer A, Kurenko-Deptuch M, Mouy R, Petropoulou T, Roesler J, Seger R, Stasia MJ, Valerius NH, Weening RS, Wolach B, Roos D, Kuijpers TW. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234. https://doi.org/10.1371/journal.pone.0005234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blancas-Galicia L, Santos-Chávez E, Deswarte C, Mignac Q, Medina-Vera I, León-Lara X, Roynard M, et al. Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease. J Clin Immunol. 2020;40(3):475–93. https://doi.org/10.1007/s10875-020-00750-5.

    Article  CAS  PubMed  Google Scholar 

  38. Rawat A, Vignesh P, Sudhakar M, Sharma M, Suri D, Jindal A, Gupta A, et al. Clinical, immunological, and molecular profile of chronic granulomatous disease: a multi-centric study of 236 patients from India. Front Immunol. 2021;12:625320. https://doi.org/10.3389/fimmu.2021.625320.

    Article  CAS  PubMed Central  Google Scholar 

  39. Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to autosomal forms of disease. Clin Rev Allergy Immunol. 2021;9:1–14. https://doi.org/10.1007/s12016-021-08870-5.

    Article  Google Scholar 

  40. de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, Al-Muhsen S, et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine. 2010;89(6):381–402. https://doi.org/10.1097/MD.0b013e3181fdd832.

    Article  CAS  PubMed  Google Scholar 

  41. Taur PD, Gowri V, Pandrowala AA, Iyengar VV, Chougule A, Golwala Z, Chandak S, et al. Clinical and molecular findings in Mendelian susceptibility to mycobacterial diseases: experience from India. Front Immunol. 2021;12:631298. https://doi.org/10.3389/fimmu.2021.631298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Errami A, Baghdadi JE, Ailal F, Benhsaien I, Bakkouri JE, Jeddane L, et al. Mendelian susceptibility to mycobacterial disease (MSMD): clinical, immunological, and genetic features of 22 patients from 15 Moroccan kindreds. J Clin Immunol. 2023;43:728–40. https://doi.org/10.1007/s10875-022-01419-x.

    Article  CAS  PubMed  Google Scholar 

  43. Peñafiel Vicuña AK, Yamazaki Nakashimada M, León Lara X, Mendieta Flores E, Nuñez Núñez ME, Lona-Reyes JC, Hernández Nieto L, et al. Mendelian susceptibility to mycobacterial disease: retrospective clinical and genetic study in Mexico. J Clin Immunol. 2023;43(1):123–35. https://doi.org/10.1007/s10875-022-01357-8.

    Article  CAS  PubMed  Google Scholar 

  44. Mahdaviani SA, Mansouri D, Jamee M, Zaki-Dizaji M, Aghdam KR, Mortaz E, Khorasanizadeh M, et al. Mendelian susceptibility to mycobacterial disease (MSMD): clinical and genetic features of 32 Iranian patients. J Clin Immunol. 2020;40(6):872–82. https://doi.org/10.1007/s10875-020-00813-7.

    Article  CAS  PubMed  Google Scholar 

  45. Depner M, Fuchs S, Raabe J, Frede N, Glocker C, Doffinger R, Gkrania-Klotsas E, et al. The extended clinical phenotype of 26 patients with chronic mucocutaneous candidiasis due to gain-of-function mutations in STAT1. J Clin Immunol. 2016;36:73e84. https://doi.org/10.1007/s10875-015-0214-9.

    Article  CAS  Google Scholar 

  46. Jindal AK, Pilania RK, Rawat A, Singh S. Primary immunodeficiency disorders in India-a situational review. Front Immunol. 2017;19(8):714. https://doi.org/10.3389/fimmu.2017.00714.

    Article  Google Scholar 

  47. Gupta S, Sehgal S. Editorial: advances in primary immunodeficiencies in India. Front Immunol. 2021;24(12):701335. https://doi.org/10.3389/fimmu.2021.701335.

    Article  CAS  Google Scholar 

  48. Taur PD, Gowri V, Pandrowala AA, Iyengar VV, Chougule A, Golwala Z, Chandak S, et al. Clinical and molecular findings in Mendelian susceptibility to mycobacterial diseases: experience from India. Front Immunol. 2021;12:631298. https://doi.org/10.3389/fimmu.2021.631298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boisson-Dupuis S, Bustamante J. Mycobacterial diseases in patients with inborn errors of immunity. Curr Opin Immunol. 2021;72:262–71. https://doi.org/10.1016/j.coi.2021.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mellouli F, Mustapha IB, Khaled MB, Besbes H, Ouederni M, Mekki N, Ali MB, et al. Report of the Tunisian registry of primary immunodeficiencies:25-years of experience (1988–2012). J Clin Immunol. 2015;35(8):745–53. https://doi.org/10.1007/s10875-015-0206-950.

    Article  PubMed  Google Scholar 

  51. Abolhassani H, Azizi G, Sharifi L, Yazdani R, Mohsenzadegan M, Delavari S, Sohani M, et al. Global systematic review of primary immunodeficiency registries. Expert Rev Clin Immunol. 2020;16(7):717–32. https://doi.org/10.1080/1744666X.2020.1801422.

    Article  CAS  PubMed  Google Scholar 

  52. Ismaili-Jaha V, Kuli-Lito G, Spahiu-Konjusha S, Baloku A, Maródi L. Through education and collaboration to better care for primary imunodeficiencies in Albania and Kosovo. J Clin Immunol. 2022;1–5. https://doi.org/10.1007/s10875-022-01409-z

Download references

Acknowledgements

We thank the Jeffrey Modell Foundation for providing next generation sequencing for some patients, The Binding Site, Birmingham, UK, for providing typhoid VI antibody testing kits, and Dr. Nalini Withana for providing DNA extraction kits.

Funding

The Laboratory of Human Genetics of Infectious Diseases is supported in part by institutional grants from INSERM, the University of Paris Cité, the St. Giles Foundation, and The Rockefeller University, the Center for Clinical and Translational Science grant number UL1TR001866 from the National Center for Research Resources and the National Center for Advancing Sciences (NCATS), National Institutes of Health (NIH), the National Institute of Allergy and Infectious Diseases, NIH (R01AI095983), a grant from the French Foundation for Medical Research (FRM) and grants from the French National Research Agency (ANR) under the “Investments for the future” program (ANR-10-IAHU-01) and GENMSMD (ANR-16-CE17-0005-01). Y-L L is supported by the Hong Kong Society for the Relief of Disabled Children for his research in inborn error of immunity. The Jeffrey Modell Foundation has sponsored next generation sequencing for some patients.

Author information

Authors and Affiliations

Authors

Contributions

RdS and DD conceptualized the study and performed data analysis. JB, S B-D, AP, J-LC, K-WC, and Y-LL performed genetic studies. RD and DSK did cytokine assays. RdS drafted the manuscript. CK provided the data. JT helped in genetic diagnosis. All authors critically reviewed the manuscript and approved the submitted version.

Corresponding author

Correspondence to Rajiva de Silva.

Ethics declarations

Ethics Approval

The study was reviewed and approved by the Ethics Committee of the Medical Research Institute (28/2020 and extended in January 2023).

Consent to Participate

This is a retrospective study of existing data. Written informed consent to participate in genetic testing and publishing the results was provided by the participant or parent/legal guardian.

Consent for Publication

Consent for publication is given.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasanayake, D., Bustamante, J., Boisson–Dupuis, S. et al. Inborn Errors of Immunity—the Sri Lankan Experience 2010–2022. J Clin Immunol 43, 1858–1872 (2023). https://doi.org/10.1007/s10875-023-01542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-023-01542-3

Keywords

Navigation