Skip to main content
Log in

Imidacloprid impedes mitochondrial function and induces oxidative stress in cotton bollworm, Helicoverpa armigera larvae (Hubner: Noctuidae)

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Neonicotinoids have high agonistic affinity to insect nicotinic acetylcholine receptors (nAChR) and are frequently used as insecticides against most devastating lepidopteran insect pests. Imidacloprid influenced dose-dependent decline in the state III and IV respiration, respiration control index (RCI), and P/O ratios, in vitro and in vivo. The bioassay indicated its LD50 value to be 531.24 μM. The insecticide exhibited a dose-dependent inhibition on F0F1-ATPase and complex IV activity. At 600 μM, the insecticide inhibited 83.62 and 27.13% of F0F1-ATPase and complex IV activity, respectively, and induced the release of 0.26 nmoles/min/mg protein of cytochrome c. A significant dose- and time-dependent increase in oxidative stress was observed; at 600 μM, the insecticide correspondingly induced lipid peroxidation, LDH activity, and accumulation of H2O2 content by 83.33, 31.51 and 223.66%. The stress was the maximum at 48 h of insecticide treatment (91.58, 35.28, and 189.80%, respectively). In contrast, catalase and superoxide dismutase were reduced in a dose- and time-dependent manner in imidacloprid-fed larvae. The results therefore suggest that imidacloprid impedes mitochondrial function and induces oxidative stress in H. armigera, which contributes to reduced growth of the larvae along with its neurotoxic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad S, Ansari MS, Ahmad N (2013) Acute toxicity and sublethal effects of the neonicotinoid imidacloprid on the fitness of Helicoverpa armigera (Lepidoptera: Noctuidae). Int J Trop Insect Sci 33:264–275

    Article  Google Scholar 

  • Akbar SMD, Sharma HC, Jayalakshmi SK, Sreeramulu K (2012a) Methylparathion- and carbofuran-induced mitochondrial dysfunction and oxidative stress in Helicoverpa armigera(Noctuidae: lepidoptera). Pestic Biochem Physiol 103:31–37

    Article  CAS  Google Scholar 

  • Akbar SMD, Sharma HC, Jayalakshmi SK, Sreeramulu K (2012b) Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera. J Bioenerg Biomembr 44:233–241

    Article  CAS  Google Scholar 

  • Akbar SM, Aurade RM, Sharma HC, Sreeramulu K (2014) Mitochondrial P-glycoprotein ATPAse contributes to insecticide resistance in the cotton bollworm, Helicoverpa armigera (Noctuidae: Lepidoptera). Cell Biochem Biophys 70:651–660

    Article  CAS  Google Scholar 

  • Ameta OP, Bunkner GK (2007) Efficacy of flubendiamide against fruit borer, Helicoverpa armigera in tomato with safety to natural enemies. Indian J Plant Prot 35:235–237

    Google Scholar 

  • Baginski ES, Foa PP, Zak B (1967) Determination of phosphate: study of labileorganic phosphate interference. Clin Chim Acta 15:155–161

    Article  CAS  Google Scholar 

  • Bai D, Lummis S, Leicht W, Breer H, Sattelle D (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic Sci 33:197–204

    Article  CAS  Google Scholar 

  • Bianchi CM, Genova L, Castelli GP, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly. Kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  CAS  Google Scholar 

  • Campbell JB, Nath R, Gadau J, Fox T, DeGradi-Hoffman G, Harrison JF (2016) The fungicide pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honeybees. J Insect Physiol 86:11–16

    Article  CAS  Google Scholar 

  • Carneiro E, Silva LB, Maggioni K, dos Santos VB, Rodrigues TF, Reis SS, Pavan BE (2014) Evaluation of insecticides targeting control of Helicoverpa armigera (Hubner) (Lepidoptera: Noctudae). American J Plant Sci 5:2823–2828

    Article  Google Scholar 

  • Chakraborty H, Chakraborty PK, Raha S, Mandal PC, Sarkar M (2007) Interaction of piroxicam with mitochondrial membrane and cytochrome c. Biochim Biophys Acta 1768:1138–1146

    Article  CAS  Google Scholar 

  • Chamberlin ME (2007) Changes in mitochondrial electron transport chain activity during insect metamorphosis. Am J Physiol Regul Integr Comp Physiol 292:1016–1022

  • Chance B, Seis H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    Article  CAS  Google Scholar 

  • Crabtree B, Newsholme EA (1972) The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J 126:49–58

    Article  CAS  Google Scholar 

  • Davey GP, Clark JB (1996) Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem 66:1617–1624

    Article  CAS  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Jean-Claude M (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  CAS  Google Scholar 

  • Dikshit AK, Lal OP (2002) Safety evaluation and persistence of imidacloprid on acid lime (Citrus aurantiifolia Swingle). Bull Environ Contam Toxicol 68:495–501

    Article  CAS  Google Scholar 

  • Dua R, Gill KD (2001) Aluminium phosphide exposure: implications on rat brain lipid peroxidation and antioxidant defence system. Pharmacol Toxicol 89:315–319

    Article  CAS  Google Scholar 

  • Gassner B, Wüthrich A, Schooltysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of mitochondrial complex I. J Pharmacol Exp Therapeut 281:855–860

    CAS  Google Scholar 

  • Gupta S, Gajbhiye VT, Kalpana ANP (2002) Leaching behavior of imidacloprid formulations in soil. Bull Environ Contam Toxicol 68:502–508

    Article  CAS  Google Scholar 

  • Han Y, Wu S, Li Y, Jian-Wei L, Campbell PM, Farnsworth C, Scott C, Russell RJ, Oakeshott JG, Wu Y (2012) Proteomic and molecular analyses of esterases associated with monocrotophos resistant in Helicoverpa armigera. Pestic Biochem Physiol 104:243–251

    Article  CAS  Google Scholar 

  • Janqueira VBC, Simizu K, Videla LA, Barros SBDM (1986) Dose-dependent study of the effect of acute lindane administration on rat liver superoxide anion production, antioxidant enzyme activities and lipid peroxidation. Toxicology 41:193–204

    Article  Google Scholar 

  • Johnson KM, Cleary J, Fierke CA, Opipari AW, Glick GD (2006) Mechanistic basis for therapeutic targeting of the mitochondrial F1F0-ATPase. ACS Chem Biol 5:304–308

    Article  Google Scholar 

  • Jovanović P, Žorić L, Stefanović I, Džunić B, Djordjević-Jocić J, Radenković M, Jovanović M (2010) Lactate dehydrogenase and oxidative stress activity in primary open-angle glaucoma aqueous humour. Bosn J Basic Med Sci 10(1):83–88

    Article  Google Scholar 

  • Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969

    Article  CAS  Google Scholar 

  • Korshunov SS, Krasnikov BF, Pereverzev MO, Skulachev VP (1999) The antioxidant functions of cytochrome c. FEBS Lett 462:192–198

  • Kumar S, Park J, Kim E, Na J, Chun YS, Kwon H, Kim W, Kim Y (2015) Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pestic Biochem Physiol 124:48–59

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  Google Scholar 

  • Liu MY, Casida JE (1993) High affinity binding of [3H]imidacloprid in the insect acetylcholine receptor. Pestic Biochem Physiol 46:40–46

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Martinez-Cruz O, Sanchez-Paz A, Garcia-Carreño F, Jimenez-Gutierrez L, del Toro M. de los AN, Muhlia-Almazan A (2012) Invertebrates mitochondrial function and energetic challenges. Bioenergetics, ISBN 978-953-51-0090-4, Edited by: Kevin Clark Publisher: InTech, pp 181–218

  • Mehta A, Verma RS, Srivastava N (2009) Chloropyrifos induced alterations in the levels of hydrogen peroxide, nitrate and nitrite in rat brain and liver. Pestic Biochem Physiol 94:55–59

    Article  CAS  Google Scholar 

  • Nicodemo D, Maioli MA, Medeiros HCD, Guelfi M, Balieira KVB, De Jong D, Mingatto FE (2014) Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ Toxicol Chem 33:2070–2075

    Article  CAS  Google Scholar 

  • Nooren Z, Ashraf M (2009) Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanussativus L.) Environ Exp Bot 67:395–402

    Article  Google Scholar 

  • Olgun S, Misra HP (2006) Pesticides induced oxidative stress in thymocytes. Mol Cell Biochem 290:137–144

    Article  CAS  Google Scholar 

  • Overmyer JP, Mason BN, Armbrust KL (2005) Acute toxicity of imidacloprid and fipronil to a nontarget aquatic insect, Simulium vittatum zetterstedt cytospecies IS-7. Bull Environ Contam Toxicol 74:872–879

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistoles P, Ruggiero FM (2001) Reactive oxygen species generated by mitochondrial respiratory chain affect the complex III activity via cardiolipin peroxidation in beef-heart submitochondrial particles. Mitochondrion 1:151–159

    Article  CAS  Google Scholar 

  • Petrosillo G, De Benedictis V, Ruggiero FM, Paradies G (2013) Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J Bioenerg Biomembr 45:431–440

    Article  CAS  Google Scholar 

  • Regupathy A, Ramasubramanian T, Ayyasamy R (2004) Rationale behind the use of insecticide mixtures for the management of insecticide resistance in India. J Food Agric Environ 2:278–284

    CAS  Google Scholar 

  • Shang JY, Shao YM, Lang GJ, Yuan G, Tang ZH, Zhang CX (2007) Expression of two types of acetylcholinesterase gene from the silkworm, Bombyx mori, in insect cells. Insect Sci 14:443–449

    Article  CAS  Google Scholar 

  • Sharma HC (2005) Heliothis/Helicoverpamanagement—emerging trends and strategies for future research, Oxford and IBH Publishing Co, New Delhi

  • Stoughton SJ, Liber K, Culp J, Cessna A (2008) Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol 54:662–673

    Article  CAS  Google Scholar 

  • Suchail S, Guez D, Belzunces L (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ Toxicol Chem 19:1901–1905

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  Google Scholar 

  • Yogeeswarudu B, Venkata Krishna K (2014) Field studies on efficacy of novel insecticides against Helicoverpa armigera (Hubner) infesting on chickpea. J Entomol Zool Stud 2:286–289

    Google Scholar 

  • Zhang A, Kayser H, Maienfisch P, Casida JE (2000) Insect nicotinic acetylcholine receptor: conserved neonicotinoid specificity of [3H]imidacloprid binding site. J Neurochem 75:1294–1303

    Article  CAS  Google Scholar 

  • Zhou JY, Prognon P (2006) Raw material enzymatic activity determination: a specific case for validation and comparison of analytical methods. The example of superoxide dismutase (SOD). J Pharm Biomed Anal 40:1143–1148

    Article  CAS  Google Scholar 

  • Zhu YC, Adamczyk J, Rinderer T, Yao J, Danka R, Luttrell R, Gore J (2015) Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera: Apidae). J Econ Entomol 108:2640–2647

    Article  Google Scholar 

  • Zhu YC, Yao J, Adamczyk J, Luttrell R (2017) Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS One 12(5):1–16. https://doi.org/10.1371/journal.pone.0176837

Download references

Acknowledgements

The present work was carried out at the Insect Rearing Laboratory, Entomology, ICRISAT, Hyderabad. It was supported by Gulbarga University, Gulbarga, India, under financial assistance for Ph.D. students (No. GUG/SC/ST cell/2013-14/375) and Special Assistance Programme (SAP) sanctioned to the Department by Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuruba Sreeramulu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nareshkumar, B., Akbar, S.M., Sharma, H.C. et al. Imidacloprid impedes mitochondrial function and induces oxidative stress in cotton bollworm, Helicoverpa armigera larvae (Hubner: Noctuidae). J Bioenerg Biomembr 50, 21–32 (2018). https://doi.org/10.1007/s10863-017-9739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9739-3

Keywords

Navigation