Skip to main content
Log in

GFT projection NMR for efficient 1H/13C sugar spin system identification in nucleic acids

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify 1H/13C sugar spin systems in 13C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of 13C–1H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1′- and 3′-CH signal dispersion for complete spin system identification including 5′-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3′-untranslated region of the pre-mRNA of human U1A protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

GFT:

G-matrix Fourier transformation

r.f.:

Radio-frequency

RNA:

Ribonucleic acid

References

  • Atreya HS, Szyperski T (2004) G-matrix fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 101:9642–9647

    Article  ADS  Google Scholar 

  • Atreya HS, Szyperski T (2005) Rapid NMR data collection. Methods Enzymol 394:78–108

    Article  Google Scholar 

  • Atreya HS, Eletsky A, Szyperski T (2005) Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments. J Am Chem Soc 127:4554–4555

    Article  Google Scholar 

  • Bartels C, Xia TH, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  Google Scholar 

  • Batey RT, Inada M, Kujawinski E, Puglisi JD, Williamson JR (1992) Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res 20:4515–4523

    Article  Google Scholar 

  • Batey RT, Battiste JL, Williamson JR (1995) Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol 261:300–322

    Article  Google Scholar 

  • Bayer P, Varani L, Varani G (1999) Refinement of the structure of protein-RNA complexes by residual dipolar coupling analysis. J Biomol NMR 14:149–155

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skeleton NJ (2007) Protein NMR spectroscopy. Academic Press, San Diego

    Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Eletsky A, Atreya HS, Liu G, Szyperski T (2005) Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy. J Am Chem 127:14578–14579

    Article  Google Scholar 

  • Fernández C, Szyperski T, Billeter M, Ono A, Iwai H, Kainosho M, Wüthrich K (1999) Conformational changes of the BS2 operator DNA upon complex formation with the Antennapedia homeodomain studied by NMR with 13C/15N-labeled DNA. J Mol Biol 292:609–617

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Grzesiek S, Kuboniwa H, Hinck AP, Bax A (1995) Multiple-quantum line narrowing for measurement of Ha.-Hb. J couplings in isotopically enriched proteins. J Am Chem Soc 117:5312–5315

    Article  Google Scholar 

  • Gubser CC, Varani G (1996) Structure of the polyadenylation egulatory element of the uman U1A pre-mRNA 3′-untranslated region and interaction with the U1A protein. Biochem 35:2253–2267

    Article  Google Scholar 

  • Güntert P (2006) Symbolic NMR product operator calculations. Int J Quantum Chem 106:344–350

    Article  ADS  Google Scholar 

  • Güntert P, Schaefer N, Otting G, Wüthrich K (1993) POMA: a complete Mathematica implementation of the NMR product operator formalism. J Mag Res 101:103–105

    Article  Google Scholar 

  • Holland DJ, Bostock MJ, Gladden LF, Nietlispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem Int Ed Engl 50:6548–6551

    Article  Google Scholar 

  • Hoogstraten CG, Pardi A (1998) Measurement of carbon-phosphorus J-coupling constants in RNA using spin-echo difference constant-time HCCH-COSY. J Magn Reson 133:236–240

    Article  ADS  Google Scholar 

  • Hyberts SG, Arthanari H, Wagner G (2012) Applications of non-uniform sampling and processing. Top Curr Chem 316:125–148

    Article  Google Scholar 

  • Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed Engl 50:5556–5559

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kojima C, Ono A, Kainosho M (2001) Solid-phase synthesis of selectively labeled DNA: applications for multidimensional nuclear magnetic resonance spectroscopy. Methods Enzymol 338:261–283

    Article  Google Scholar 

  • Latham MP, Brown DJ, McCallum SA, Pardi A (2005) NMR methods for studying the structure and dynamics of RNA. ChemBioChem 6:1492–1505

    Article  Google Scholar 

  • Legault P, Jucker FM, Pardi A (1995) Improved measurement of 13C, 31P J coupling constants in isotopically labeled RNA. FEBS Lett 362:156–160

    Article  Google Scholar 

  • Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1994) A three-dimensional triple-resonance 1H, 13C, 31P experiment: sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J Am Chem Soc 116:6472–6473

    Article  Google Scholar 

  • Masse JE, Bortman P, Dieckmann T, Feigon J (1998) Simple, efficient protocol for enzymatic synthesis of uniformy 13C,15 N-labeled DNA for heteronuclear NMR sudies. Nucleic Acids Res 26:2618–2624

    Article  Google Scholar 

  • Mobli M, Maciejewski MW, Schuyler AD, Stern AS, Hoch JC (2012) Sparse sampling methods in multidimensional NMR. Phys Chem Chem Phys 21:10835–10843

    Article  Google Scholar 

  • Nikonowicz EP, Pardi A (1993) An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J Mol Biol 232:1141–1156

    Article  Google Scholar 

  • Nikonowicz EP, Sirr A, Legault P, Jucker FM, Baer LM, Pardi A (1992) Preparation of 13C and 15N labeled RNA for heteronuclear multidimensional NMR studies. Nucleic Acids Res 20:4507–4513

    Article  Google Scholar 

  • Pardi A (1992) Isotope labeling for NMR studies of biomolecules. Curr Opin Struct Biol 2:832–835

    Article  Google Scholar 

  • Price SR, Oubridge C, Varani G, Nagai K (1998) Preparation of RNA-protein complexes for X-ray crystallography and NMR. In: Smith C (ed) RNA-protein interaction: practical approach. Oxford University Press, Oxford, pp 37–74

    Google Scholar 

  • Ramachandran R, Sich C, Grüne M, Soskic V, Brown LR (1996) Sequential assignments in uniformly 13C- and 15 N-Labelled RNAs: the HC(N, P) and HC(N, P)-CCH-TOCSY experiments. J Biomol NMR 7:251–255

    Article  Google Scholar 

  • Santoro J, King GC (1992) A constant-time 2D overbodenhausen experiment for inverse correlation of isotopically enriched species. J Magn Reson 97:202–207

    Google Scholar 

  • Schwalbe H, Marino JP, Glaser SJ, Griesinger C (1995) Measurement of H, H-coupling constants associated with ν1, ν2, and ν3 in uniformly 13C-labelled RNA by HCC-TOCSY-CCH-E.COSY. J Am Chem Soc 117:7251–7252

    Article  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    Google Scholar 

  • Szyperski T, Atreya HS (2006) Principles and applications of GFT projection NMR spectroscopy. Magn Reson Chem 44:S51–S60

    Article  Google Scholar 

  • Szyperski T, Ono A, Fernández C, Iwai H, Tate S, Wüthrich K, Kainosho M (1997) Measurement of 3JC2′P scalar couplings in a 17 kDa protein complex with13C,15N-labeled DNA distinguishes the BI and BII phosphate conformations of the DNA. J Am Chem Soc 119:9901–9902

    Article  Google Scholar 

  • Szyperski T, Fernández C, Ono A, Kainosho M, Wüthrich K (1998) Measurement of deoxyribose 3JHH scalar couplings reveals protein binding-induced changes in the sugar puckers of the DNA. J Am Chem Soc 120:821–822

    Article  Google Scholar 

  • Szyperski T, Fernández C, Ono A, Wüthrich K, Kainosho M (1999) The 2D 31P spin-echo-difference constant-time [13C, 1H]-HMQC experiment for simultaneous determination of 3JH3′P and 3JC4′P in 13C-labeled nucleic acids and their protein complexes. J Magn Reson 140:491–494

    Article  ADS  Google Scholar 

  • Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 99:8009–8014

    Article  ADS  Google Scholar 

  • Varani G, Tinoco I Jr (1991) RNA structure and NMR spectroscopy. Q Rev Biophys 24:479–532

    Article  Google Scholar 

  • Varani G, Aboul-ela F, Allain FH-T, Gubser CC (1995) Novel three-dimensional 1H–13C-31P triple resonance experiments for sequential backbone correlations in nucleic acids. J Biomol NMR 5:315–320

    Article  Google Scholar 

  • Varani G, Aboul-ela F, Allain FH-T (1996) NMR investigations of RNA structure. Progr NMR Spectrosc 29:51–127

    Article  Google Scholar 

  • Vuister GW, Bax A (1992) Resolution enhancement and spectral editing of uniformly 13C enriched proteins by homonuclear broadband 13C–13C decoupling. J Magn Reson 98:428–435

    Google Scholar 

  • Wu Z, Delaglio F, Tjandra N, Zhurkin VB, Bax A (2003) Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J Biomol NMR 26:297–315

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (MCB 0817857 to T.S., and MCB 051644 to G.V.), the Department of Science and Technology, India (to H.S.A.), and by the CSIR, India (fellowship to G.J.) We thank Dr. A. Eletski for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szyperski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atreya, H.S., Sathyamoorthy, B., Jaipuria, G. et al. GFT projection NMR for efficient 1H/13C sugar spin system identification in nucleic acids. J Biomol NMR 54, 337–342 (2012). https://doi.org/10.1007/s10858-012-9687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9687-5

Keywords

Navigation