Skip to main content
Log in

In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion

  • Special Issue: Hydrogels in Regenerative Medicine
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The regeneration of injured or damaged tissues by cell delivery approaches requires the fabrication of cell carriers (e.g., microspheres, MS) that allow for cell delivery to limit cells spreading from the injection site. Ideal MS for cell delivery should allow for cells adhesion and proliferation on the MS before the injection, while they should allow for viable cells release after the injection to promote the damaged tissue regeneration. We optimized a water-in-oil emulsion method to obtain gelatin MS crosslinked by methylenebisacrylamide (MBA). The method we propose allowed obtaining spherical, chemically crosslinked MS characterized by a percentage crosslinking degree of 74.5 ± 2.1%. The chemically crosslinked gelatin MS are characterized by a diameter of 70.9 ± 17.2 μm in the dry state and, at swelling plateau in culture medium at 37 °C, by a diameter of 169.3 ± 41.3 μm. The MS show dimensional stability up to 28 days, after which they undergo complete degradation. Moreover, during their degradation, MS release gelatin that can improve the engraftment of cells in the injured site. The produced MS did not induce any cytotoxic effect in vitro and they supported viable L929 fibroblasts adhesion and proliferation. The MS released viable cells able to colonize and proliferate on the tissue culture plastic, used as release substrate, potentially proving their ability in supporting a simplified in vitro wound healing process, thus representing an optimal tool for cell delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018;36:348–57. https://doi.org/10.1016/j.tibtech.2018.01.005.

    Article  CAS  Google Scholar 

  2. Kim I. A brief overview of cell therapy and its product. J Korean Assoc Oral Maxillofac Surg. 2013;39:201–2. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3858137&tool=pmcentrez&rendertype=abstract.

  3. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22. https://doi.org/10.1016/j.stem.2015.06.007.

    Article  CAS  Google Scholar 

  4. Aguado BA, Mulyasasmita W, Su J, Ph D, Lampe KJ, Ph D, et al. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 2012;18:806–15.

    Article  CAS  Google Scholar 

  5. Zhao X, Liu S, Yildirimer L, Zhao H, Ding R, Wang H. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfl uidics for rapid generation of osteogenic tissue constructs. Adv Funct Mater. 2016;26:2809–19.

  6. Campiglio CE, Ceriani F, Draghi L. 3D encapsulation made easy: a coaxial-flow circuit for the fabrication of hydrogel microfibers patches. Bioengineering. 2019;6:1–13.

    Article  Google Scholar 

  7. Hernández RM, Orive G, Murua A, Pedraz JL. Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev. 2010;62:711–30. https://doi.org/10.1016/j.addr.2010.02.004.

    Article  CAS  Google Scholar 

  8. Feyen DAM, Gaetani R, Deddens J, Keulen DVan, OpbergenC Van, Poldervaart M, et al. Gelatin microspheres as vehicle for cardiac progenitor cells delivery to the myocardium. Adv Health Mater. 2016;5:1071–9.

    Article  CAS  Google Scholar 

  9. Wang C, Gong Y, Zhong Y, Yao Y, Su K, Wang DA. The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model. Biomaterials. 2009;30:2259–69. https://doi.org/10.1016/j.biomaterials.2008.12.072.

    Article  CAS  Google Scholar 

  10. Lee YS, Lim KS, Oh JE, Yoon AR, Joo WS, Kim HS, et al. Development of porous PLGA/PEI1.8kbiodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015;205:128–33. https://doi.org/10.1016/j.jconrel.2015.01.004.

    Article  CAS  Google Scholar 

  11. Kim SE, Yun YP, Shim KS, Park K, Choi SW, Shin DH, et al. Fabrication of a BMP-2-immobilized porous microsphere modified by heparin for bone tissue engineering. Colloids Surf B Biointerfaces. 2015;134:453–60. https://doi.org/10.1016/j.colsurfb.2015.05.003.

    Article  CAS  Google Scholar 

  12. Draghi L, Brunelli D, Farè S, Tanzi MC. Programmed cell delivery from biodegradable microcapsules for tissue repair. J Biomater Sci Polym Ed. 2015;26:1002–12. https://doi.org/10.1080/09205063.2015.1070706.

    Article  CAS  Google Scholar 

  13. Lizzi Lagranha V, Zambiasi Martinelli B, Baldo G, Ávila Testa G, Giacomet de Carvalho T, Giugliani R, et al. Subcutaneous implantation of microencapsulated cells overexpressing α-L-iduronidase for mucopolysaccharidosis type I treatment. J Mater Sci Mater Med. 2017;28. https://doi.org/10.1007/s10856-017-5844-4.

  14. Munarin F, Petrini P, Farè S, Tanzi MC. Structural properties of polysaccharide-based microcapsules for soft tissue regeneration. J Mater Sci Mater Med. 2010;21:365–75.

    Article  CAS  Google Scholar 

  15. Khanmohammadi M, Sakai S, Ashida T, Taya M. Production of hyaluronic-acid-based cell-enclosing microparticles and microcapsules via enzymatic reaction using a microfluidic system. J Appl Polym Sci. 2016;133:1–8.

    Article  Google Scholar 

  16. Kobayashi T, Aomatsu Y, Kanehiro H, Hisanaga M, Nakajima Y. Protection of NOD islet isograft from autoimmune destruction by agarose microencapsulation. Transplant Proc. 2003;35:484–5.

    Article  CAS  Google Scholar 

  17. Yao L, Phan F, Li Y. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Res Ther. 2013;4:1.

    Article  CAS  Google Scholar 

  18. Liang CZ, Li H, Tao YQ, Zhou XP, Yang ZR, Xiao YX, et al. Dual delivery for stem cell differentiation using dexamethasone and bFGF in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration. J Mater Sci Mater Med. 2012;23:1097–107.

    Article  CAS  Google Scholar 

  19. Lau TT, Wang C, Wang DA. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos Sci Technol. 2010;70:1909–14. https://doi.org/10.1016/j.compscitech.2010.05.015.

    Article  CAS  Google Scholar 

  20. Skop NB, Calderon F, Levison SW, Gandhi CD, Cho CH. Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater. 2013;9:6834–43. https://doi.org/10.1016/j.actbio.2013.02.043.

    Article  CAS  Google Scholar 

  21. Tanzi MC, Farè S, Gerges I. Crosslinked Gelatin Hydrogels US Patent Specification US20140154212A1. 2014.

  22. Contessi Negrini N, Tarsini P, Tanzi MC, Farè S. Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J Appl Polym Sci. 2019;47104:1–12.

    Google Scholar 

  23. Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, et al. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater. 2012;8:1768–77. https://doi.org/10.1016/j.actbio.2012.01.009.

    Article  CAS  Google Scholar 

  24. Ghorbani F, Zamanian A, Behnamghader A, Daliri Joupari M. A novel pathway for in situ synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform. J Appl Polym Sci. 2018;135:1–10.

    Google Scholar 

  25. De Clercq K, Schelfhout C, Bracke M, De Wever O, Van Bockstal M, Ceelen W, et al. Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: in vitro and in vivo characterization. Biomaterials. 2016;96:33–46. https://doi.org/10.1016/j.biomaterials.2016.04.012.

    Article  CAS  Google Scholar 

  26. Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, et al. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B. 2014;2:1470–82.

    Article  CAS  Google Scholar 

  27. Liang H-C, Chang W-H, Lin K-J, Sung H-W. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. J Biomed Mater Res A. 2003;65:271–82.

    Article  Google Scholar 

  28. Adhirajan N, Shanmugasundaram N, Babu M. Gelatin microspheres cross-linked with EDC as a drug delivery system for doxycyline: development and characterization. J Microencapsul. 2007;24:659–71. https://doi.org/10.1080/02652040701500137.

    Article  CAS  Google Scholar 

  29. Tatard VM, Venier-Julienne MC, Saulnier P, Prechter E, Benoit JP, Menei P, et al. Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials. 2005;26:3727–37.

    Article  CAS  Google Scholar 

  30. Tan H, Huang D, Lao L, Gao C. RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. J Biomed Mater Res Appl Biomater. 2009;91:228–38.

    Article  Google Scholar 

  31. Jamie Tsung M, Burgess DJ. Preparation and characterization of gelatin surface modified PLGA microspheres. AAPS PharmSci. 2001;3:14–24. http://link.springer.com/10.1208/ps030211.

    Article  Google Scholar 

  32. Wang C, Gong Y, Lin Y, Shen J, Wang DA. A novel gellan gel-based microcarrier for anchorage-dependent cell delivery. Acta Biomater. 2008;4:1226–34.

    Article  CAS  Google Scholar 

  33. Nagai N, Kumasaka N, Kawashima T, Kaji H, Nishizawa M, Abe T. Preparation and characterization of collagen microspheres for sustained release of VEGF. J Mater Sci Mater Med. 2010;21:1891–8.

    Article  CAS  Google Scholar 

  34. Lönnqvist S, Rakar J, Briheim K, Kratz G. Biodegradable gelatin microcarriers facilitate re-epithelialization of human cutaneous wounds—ān in vitro study in human skin. PLoS ONE. 2015;10:1–10.

    Google Scholar 

  35. Ji W, Yang F, Seyednejad H, Chen Z, Hennink WE, Anderson JM, et al. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials. 2012;33:6604–14. https://doi.org/10.1016/j.biomaterials.2012.06.018.

    Article  CAS  Google Scholar 

  36. Gorgieva S, Kokol V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J Biomed Mater Res Part A. 2012;100 A:1655–67.

    Article  Google Scholar 

  37. Tondera C, Hauser S, Krüger-Genge A, Jung F, Neffe AT, Lendlein A, et al. Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from multimodal preclinical imaging in immunocompetent nude mice. Theranostics. 2016;6:2114–28.

    Article  CAS  Google Scholar 

  38. Gorgieva S, Kokol V. Collagen-versus gelatine-based biomaterials and their biocompatibility: review and perspectives Biomaterials Applications for Nanomedicine 2. London, UK: IntechOpen; 2011. p. 17–52.

    Google Scholar 

  39. Graziola F, Candido TM, De Oliveira CA, Peres DD, Issa MG, Mota J, et al. Gelatin-based microspheres crosslinked with glutaraldehyde and rutin oriented to cosmetics. Braz J Pharm Sci. 2016;52:603–12.

    Article  CAS  Google Scholar 

  40. Nguyen AH, McKinney J, Miller T, Bongiorno T, McDevitt TC. Gelatin methacrylate microspheres for controlled growth factor release. Acta Biomater. 2015;13:101–10. https://doi.org/10.1016/j.actbio.2014.11.028.

    Article  CAS  Google Scholar 

  41. Gritsch L, Motta FL, Contessi Negrini N, Yahia LH, Farè S. Crosslinked gelatin hydrogels as carriers for controlled heparin release. Mater Lett. 2018;228:375–8.

    Article  CAS  Google Scholar 

  42. Lai JY, Lu PL, Chen KH, Tabata Y, Hsiue GH. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules. 2006;7:1836–44.

    Article  CAS  Google Scholar 

  43. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015;14:737–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Contessi Negrini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contessi Negrini, N., Lipreri, M.V., Tanzi, M.C. et al. In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. J Mater Sci: Mater Med 31, 26 (2020). https://doi.org/10.1007/s10856-020-6363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-6363-2

Navigation