Skip to main content

Advertisement

Log in

In-vitro bioactivity of silicate-phosphate glasses using agriculture biomass silica

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present work, silica extracted from the agricultural waste material; rice husk (RH) was utilized for the synthesis of biocompatible glass of general composition SiO2-P2O5-CaO-MgO-MoO3. In the synthesized glasses P2O5 (5%) and CaO (25%) was kept constant whereas MgO and MoO3 was varied from 10% to 20% and 0% to 5% respectively. The structural, morphological, elemental and functional properties of silica as well as the derived glasses were analyzed by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared (FTIR) spectroscopy techniques. The effect of MoO3 on the structural and thermal properties of silicate phosphate glasses has been studied in details. The bioactivity of as-synthesized glass samples were further evaluated after immersion in Simulated Body Fluid (SBF) solution which shows bioactive properties thus enabling them to be used as scaffolds in implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    CAS  Google Scholar 

  2. Jones JR. Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater. 2015;23:S53–82.

    Google Scholar 

  3. Aguiar H, González P, Serra J. Bioactive glass structure and solubility. In: Bioactive glasses. Second ed. Cambridge. Elsevier Ltd; 2018.

  4. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.

    Google Scholar 

  5. Fiume E, Barberi J, Verné E, Baino F. Bioactive glasses: from parent 45S5 composition to Scaffold-assisted tissue-healing therapies. J Funct Biomater. 2018;9:1–33.

    Google Scholar 

  6. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    CAS  Google Scholar 

  7. Jha P, Singh S, Sharma G, Singh K. Antimicrobial and bioactive phosphate-free glass—ceramics for bone tissue engineering applications. Mater Sci Eng C Elsevier. 2018;86:9–17.

    CAS  Google Scholar 

  8. Erasmus EP, Sule R, Johnson OT, Massera J, Sigalas I. In vitro evaluation of Porous borosilicate, borophosphate and phosphate bioactive glasses scaffolds fabricated using foaming agent for bone regeneration. Sci Rep. 2018;3699:1–13.

    Google Scholar 

  9. Zhu C, Wang J, Zhang M, Ren X, Shen J, Yue Y. Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LED applications. J Am Ceram Soc. 2014;97:854–61.

    CAS  Google Scholar 

  10. Engelhardt J, Frey A, Gloger S, Hahn G, Terheiden B. Passivating boron silicate glasses for co-diffused high-efficiency n-type silicon solar cell application. Appl Phys Lett. 2015;107:1–5.

    Google Scholar 

  11. Hench LL, Jones JR. Bioactive glasses: frontiers and challenges. Front Bioeng Biotechnol. 2015;3:1–12.

    Google Scholar 

  12. Wasanapiarnpong T, Vorajesdarom B, Rujirakamort E, Nilpairach S, Mongkolkachit C. Fabrication of silica glass from rice husk ash with spodumene additions. In: IOP conference series: materials science and engineering. IOP publisher, United Kingdom. vol 18;2011.

  13. Aguiar H, Solla EL, Serra J, González P, León B, Almeida N. et al. Orthophosphate nanostructures in SiO2-P2O5-CaO-Na2O-MgO bioactive glasses. J Non-Crystalline Solids. 2008;354:4075–80.

    CAS  Google Scholar 

  14. Himanshu T, Sp S, Ka S, Prerna M, Ashish J. Studies on preparation and characterization of 45S5 bioactive glass doped with (TiO2 + ZrO2) as bioactive ceramic material. Bioceram Dev Appl. 2016;6:6–11.

    Google Scholar 

  15. Lucacel RC, Ponta O, Licarete E, Radu T, Simon V. Synthesis, structure, bioactivity and biocompatibility of melt-derived P2O5-CaO-B2O3-K2O-MoO3 glasses. J Non Cryst Solids. 2016;439:67–73. https://doi.org/10.1016/j.jnoncrysol.2016.02.022.

    Article  CAS  Google Scholar 

  16. Lee S, Obata A, Brauer DS, Kasuga T. Dissolution behavior and cell compatibility of biomedical applications. Biomed Glasses. 2015;3:151–8.

    Google Scholar 

  17. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress. Colloids Surf B Biointerfaces. 2013;112:521–4.

    CAS  Google Scholar 

  18. Goumeidane F, Iezid M, Melik B, Ouannes K, Legouera M, Poulain M, et al. Influence of molybdenum oxide on structural, optical and physical properties of oxychloride glasses for nonlinear optical devices. Ceram Int. 2017;43:11305–11.

    CAS  Google Scholar 

  19. Pereira LFP, Bodiang K, Nunes EHM, Mear O, Delevoye L, Montagne L. Molybdenum Influence on the mixed-alkali effect of lithium−sodium phosphate glasses. J Phys Chem C. 2018;122:15886–91.

    CAS  Google Scholar 

  20. Caurant D. Effect of MoO3, Nd2O3 and RuO2 on the crystallization of soda-lime aluminoborosilicate glasses. J Mater Sci. 2014;50:219–41.

    Google Scholar 

  21. El-Meliegy E, Farag MKJ. Dissolution and drug release profiles of phosphate glasses doped with high valency oxides. J Mater Sci Mater Med. 2016;27:1–10.

    CAS  Google Scholar 

  22. Zollfrank C, Gutbrod K, Wechsler P, Peter J. Antimicrobial activity of transition metal acid MoO 3 prevents microbial growth on material surfaces. Mater Sci Eng C 2012;32:47–54.

    CAS  Google Scholar 

  23. Ponta O, Ciceo-lucacel R, Vulpoi A, Radu T, Simon S. Molybdenum effect on the structure of SiO2–CaO–P2O5 bioactive xerogels and on their interface processes with simulated biofluids. J Biomed Mater Res Part A. 2013;102:3177–85.

    Google Scholar 

  24. Ã TK, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Google Scholar 

  25. Prasad R, Pandey M. Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview. Bull Chem React Eng Catal. 2012;7:1–24.

    Google Scholar 

  26. Hoppe A, Sarker B, Detsch R, Hild N, Mohn D, Stark WJ, et al. In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles. J Non Cryst Solids. 2014;387:41–6. https://doi.org/10.1016/j.jnoncrysol.2013.12.010.

    Article  CAS  Google Scholar 

  27. Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78.

    CAS  Google Scholar 

  28. Azadeh M, Zamani C, Ataie A, Morante JR. Three-dimensional rice husk-originated mesoporous silicon and its electrical properties. Mater Today Commun. 2018;14:141–50.

    CAS  Google Scholar 

  29. Liou TH, Yang C-C. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng B. 2011;176:521–9.

    CAS  Google Scholar 

  30. Fernandes IJ, Calheiro D, Sánchez FAL, Camacho ALD, de Campos Rocha TLA, Moraes CAM. et al. Characterization of silica produced from rice husk ash: comparison of purification and processing methods. Mater Res. 2017;20:512–8.

    Google Scholar 

  31. Pineda-Vásquez TG, Casas-Botero AE, Ramírez-Carmona ME, Torres-Taborda MM, Soares CHL, Hotza D. Biogeneration of silica nanoparticles from rice husk ash using fusarium oxysporum in two different growth media. Ind Eng Chem Res. 2014;53:6959–65.

    Google Scholar 

  32. Danewalia SS, Sharma G, Thakur S, Singh K. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics. Sci Rep. 2016;6:1–12.

    Google Scholar 

  33. Mohan S, Thind KS, Sharma G, Gerward L. Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses. Spectrochim Acta A Mol Biomol Spectrosc. 2008;70:1173–9.

    Google Scholar 

  34. Singh K, Bala I, Kumar V. Structural, optical and bioactive properties of calcium borosilicate glasses. Ceram Int. 2009;35:3401–6.

    CAS  Google Scholar 

  35. Ratep A. Preparation and characterization of silicate glasses from waste agriculture materials (rice husk and peanut peel). Silicon. 2019;92:1–8.

    Google Scholar 

  36. Jha K, Jayasimhadri M. Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glass for white light emitting diodes. J Alloy Compd. 2016;688:833–40.

    CAS  Google Scholar 

  37. Araújo M, Miola M, Baldi G, Perez J, Verné E. Bioactive glasses with low Ca/P ratio and enhanced bioactivity. Materials. 2016;226:1–15.

    Google Scholar 

  38. Prasetyoko D, Ramli Z, Endud S, Hamdan H. Conversion of rice husk ash to zeolite beta. Waste Manag. 2006;26:1173

    CAS  Google Scholar 

  39. Danewalia SS, Singh K. Magnetic and bioactive properties of MnO2/Fe2O3 modified Na2O-CaO-P2O5-SiO2 glasses and nanocrystalline glass-ceramics. Ceram Int. 2016;42:1–8.

    Google Scholar 

  40. Pijarn N, Jaroenworaluck A, Sunsaneeyametha W, Stevens R. Synthesis and characterization of nanosized-silica gels formed under controlled conditions. Powder Technol. 2010;203:462–8.

    CAS  Google Scholar 

  41. Kalapathy U, Proctor A, Shultz J. A simple method for production of pure silica from rice hull ash. Bioresour Technol 2000;73:257–62.

    CAS  Google Scholar 

  42. Shelby JE. Introduction to glass science and technology. Second ed. Cambridge. Royal Society of Chemistry; 2005.

  43. Al-Noaman A, Rawlinson SCF, Hill RG. The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non Cryst Solids. 2012;358:3019–27.

    CAS  Google Scholar 

  44. Vogel W. Structure and crystallization of glasses. First ed. London. Pergamon Press; 1965.

  45. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mat Int. 2012;4:977–81.

    CAS  Google Scholar 

  46. Goel A, Kapoor S, Raman R, Pascual MJ, Kim H, Ferreira JMF. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Acta Biomater. 2012;8:361–72.

    CAS  Google Scholar 

  47. Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M, et al. Sol-gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Appl Ceram. 2009;108:155–61.

    CAS  Google Scholar 

  48. Abdelghany AM, El-damrawi G, Oraby AH, Madshal MA. Optical and FTIR structural studies on CoO-doped strontium phosphate glasses. J Non Cryst Solids. 2018;499:153–8.

    CAS  Google Scholar 

  49. Pérez-Pariente J, Balas F, Vallet-Regí M. Surface and chemical study of SiO2·P2O5·CaO·(MgO) bioactive glasses. Chem Mater. 2002;12:750–5.

    Google Scholar 

  50. Lusvardi G, Malavasi G, Menabue L, Aina V, Morterra C. Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 2009;5:3548–62.

    CAS  Google Scholar 

  51. Anglin EJ, Cheng L, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev. 2008;60:1266–77.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF, PU and TIFR Mumbai for providing XRD data and SAI labs, Thapar Institute of Engineering & Technology, Patiala for SEM and EDX characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Reddy, M.S. & Pandey, O.P. In-vitro bioactivity of silicate-phosphate glasses using agriculture biomass silica. J Mater Sci: Mater Med 31, 65 (2020). https://doi.org/10.1007/s10856-020-06402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06402-9

Navigation