Skip to main content
Log in

In vitro behaviour of three biocompatible glasses in composite implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(l,dl-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46.

    Article  CAS  Google Scholar 

  2. Niemelä T, Niiranen H, Kellomäki M. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II. In vitro degradation. Acta Biomater. 2008;4:156–64.

    Article  Google Scholar 

  3. Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jérôme R. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med. 2002;13:1207–14.

    Article  CAS  Google Scholar 

  4. Liu Q. Tissue engineering. In: Shi D, editor. Biomaterials and tissue engineering. Berlin: Springer; 2004. p. 195.

    Google Scholar 

  5. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  6. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  Google Scholar 

  7. Misra SK, Boccaccini AR. Biodegradable and bioactive polymer/ceramic composite scaffold. In: Boccaccini AR, Gough JE, editors. Tissue engineering using ceramics and polymers. Cambridge: Woodhead Publishing; 2007. p. 72.

    Chapter  Google Scholar 

  8. Niemelä T, Kellomäki M. Bioactive glass and biodegradable polymer composites. In: Ylänen H, editor. Bioactive glasses: materials, properties and applications. Cambridge: Woodhead Publishing; 2011. p. 227.

    Google Scholar 

  9. Niemelä T, Niiranen H, Kellomäki M, Törmälä P. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I. Initial mechanical properties and bioactivity. Acta Biomater. 2005;1:235–42.

    Article  Google Scholar 

  10. Zhou Z, Yi Q, Liu X, Liu L, Liu Q. In vitro degradation behaviors of Poly-l-lactide/bioactive glass composite materials in phosphate-buffered solution. Polym Bull. 2009;63:575–86.

    Article  CAS  Google Scholar 

  11. Brink M, Turunen T, Happonen R, Yli-Urpo A. Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J Biomed Mater Res. 1997;37:114–21.

    Article  CAS  Google Scholar 

  12. Itälä A, Koort J, Ylänen HO, Hupa M, Aro HT. Biologic significance of surface microroughing in bone incorporation of porous bioactive glass implants. J Biomed Mater Res A. 2003;67:496.

    Article  Google Scholar 

  13. Pirhonen E, Niiranen H, Niemelä T, Brink M, Törmälä P. Manufacturing, mechanical characterization, and in vitro performance of bioactive glass 13-93 fibers. J Biomed Mater Res B. 2006;77B:227–33.

    Article  CAS  Google Scholar 

  14. Blaker JJ, Bismarck A, Boccaccini AR, Young AM, Nazhat SN. Premature degradation of poly(α-hydroxyesters) during thermal processing of Bioglass®-containing composites. Acta Biomater. 2010;6:756–62.

    Article  CAS  Google Scholar 

  15. Jukola H, Nikkola L, Gomes ME, Chiellini F, Tukiainen M, Kellomäki M, Chiellini E, Reis RL, Ashammakhi N. Development of a bioactive glass fiber reinforced starch–polycaprolactone composite. J Biomed Mater Res B. 2008;87B:197–203.

    Article  CAS  Google Scholar 

  16. Niiranen H, Pyhältö T, Rokkanen P, Kellomäki M, Törmälä P. In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites. J Biomed Mater Res A. 2004;69A:699–708.

    Article  CAS  Google Scholar 

  17. Blaker JJ, Maquet V, Boccaccini AR, Jérôme R, Bismarck A. Wetting of bioactive glass surfaces by poly(α-hydroxyacid) melts: Interaction between Bioglass® and biodegradable polymers. e-Polymers. 2005;23:1–13.

    Google Scholar 

  18. Rich J, Jaakkola T, Tirri T, Närhi T, Yli-Urpo A, Seppälä J. In vitro evaluation of poly(ε-caprolactone-co-dl-lactide)/bioactive glass composites. Biomaterials. 2002;23:2143–50.

    Article  CAS  Google Scholar 

  19. Pyhältö T, Lapinsuo M, Pätiälä H, Niiranen H, Törmälä P, Rokkanen P. Fixation of distal femoral osteotomies with self-reinforced poly(l/dl)lactide 70:30 and self-reinforced poly(l/dl)lactide 70:30/bioactive glass composite rods. an experimental study on rabbits. J Biomat Sci-Polym E. 2005;16:725–44.

    Article  Google Scholar 

  20. Marcolongo M, Ducheyne P, LaCourse WC. Surface reaction layer formation in vitro on a bioactive glass fiber/polymeric composite. J Biomed Mater Res. 1997;37:440–8.

    Article  CAS  Google Scholar 

  21. Kellomäki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Törmälä P. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials. 2000;21:2495–505.

    Article  Google Scholar 

  22. Alm JJ, Frantzén JPA, Moritz N, Lankinen P, Tukiainen M, Kellomäki M, Aro HT. In vivo testing of a biodegradable woven fabric made of bioactive glass fibers and PLGA80—a pilot study in the rabbit. J Biomed Mater Res B. 2010;93B:573–80.

    Article  CAS  Google Scholar 

  23. Vedel E, Arstila H, Ylanen H, Hupa L, Hupa M. Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 1. Viscosity characteristics. Glass Technol Part A. 2008;49:251–9.

    CAS  Google Scholar 

  24. Arstila H, Vedel E, Hupa L, Hupa M. Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 2. Devitrification characteristics. Glass Technol Part A. 2008;49:260–5.

    CAS  Google Scholar 

  25. Brázda L, Hupa L, Hupa M, Helebrant A. Influence of Na2O/K2O ratio on in vitro properties of bioactive glass. In: Proceedings of the 11th ECERS conference; 2009.

  26. Massera J, Claireaux C, Lehtonen T, Tuominen J, Hupa L, Hupa M. Control of the thermal properties of slow bioresorbable glasses by boron addition. J Non Cryst Solids. 2011;357:3623–30.

    Article  CAS  Google Scholar 

  27. Arstila H, Hupa L, Karlsson KH, Hupa M. In vitro bioactivity of partially crystallized glasses. Glass Technol Part A. 2007;48:196–9.

    CAS  Google Scholar 

  28. Varila L, Fagerlund S, Hupa L, Lehtonen T, Tuominen J. Surface reactions of bioactive glasses in buffered solutions. J Eur Ceram Soc. 2012;32:2759–65.

    Article  Google Scholar 

  29. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  30. Fagerlund S, Hupa L, Hupa M. Comparison of reactions of bioactive glasses in different aqueous solutions. In: Narayan R, Singh M, McKittrick J, editors. Advances in bioceramics and biotechnologies: ceramic transactions, vol. 218. New York: Wiley; 2010. p. 101.

    Google Scholar 

  31. Douglas RW, El-Shamy TMM. Reactions of glasses with aqueous solutions. J Am Ceram Soc. 1967;50:1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the activities of the Åbo Akademi Process Chemistry Centre, A National Centre of Excellence by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Hupa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varila, L., Lehtonen, T., Tuominen, J. et al. In vitro behaviour of three biocompatible glasses in composite implants. J Mater Sci: Mater Med 23, 2425–2435 (2012). https://doi.org/10.1007/s10856-012-4693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4693-4

Keywords

Navigation