Skip to main content
Log in

A comparative analysis on the dye degradation efficiency of pure, Co, Ni and Mn-doped CuO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure, Co, Mn and Ni (1.0 wt%) doped CuO Nanoparticles (NPs) are synthesized by co-precipitation method for the catalytic property analysis. The powder X-ray diffraction pattern of pure, Co, Mn and Ni doped CuO NPs shows that the Co2+, Mn2+ and Ni2+ ions are successfully substituted to Cu2+ ion. Fourier transform infrared spectroscopy studies confirms the functional groups present in the synthesized samples. The band gap of pure CuO NPs is increased from 3.230 to 3.256 eV and 3.274 eV by adding the dopants Co and Ni. Whereas, the addition of Mn decreases the band gap to 3.207 eV. Scanning electron microscopy images show the considerable change in morphology from the nonuniform surface of nanostructure to nano flakes when Co, Mn and Ni are added as dopants. From photoluminescence spectrum, the broad green emission is observed at 521 nm. The electrical properties of synthesized materials are studied and compared by dielectric constant, dielectric loss and ac conductivity measurements. The electrochemical impedance properties of the prepared samples were also investigated. The degradation of environmental pollutants such as 4-Nitrophenol and Methylene blue dyes are analyzed by studying the catalytic activity of the synthesized material and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Arulraj, S. Govindan, S. Vadivel, B. Subramanian, J. Mater. Sci.: Mater. Electron. 28, 18455 (2017)

    CAS  Google Scholar 

  2. M.R. Shahat, M. Awual, Naushad. Chem. Eng. J. 271, 155 (2015)

    Article  CAS  Google Scholar 

  3. G.K. Mor, K. Shankar, M. Paulose, Nano Lett. 5, 191 (2005)

    Article  CAS  Google Scholar 

  4. N. Senthil Kumar, M. Ganapathy, A. Arulraj, M. Meena, M. Vimalan, I. Vetha Potheher, J. Alloys Compd. 750, 171 (2018)

    Article  CAS  Google Scholar 

  5. M.R. Awual, M.M. Hasan, A. Shahat, A. Khalegae, Chem. Eng. J. 265, 368 (2016)

    Article  Google Scholar 

  6. Y. Yu, J. Zhang, Mater. Lett. 63, 1840 (2009)

    Article  CAS  Google Scholar 

  7. Y. Yongsong, T. Youchao, R. Qinfeng, D. Xiaojun, X. Lanlan, L. Jialin, J. Sol. Stat. Chem. 182, 182 (2009)

    Article  Google Scholar 

  8. G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Chem. Eng. J251, 413 (2013)

    Google Scholar 

  9. N. Senthil Kumar, M. Ganapathy, S. Sharmila, M. Shankar, M. Vimalan, I. Vetha Potheher, J. Alloys Compd. 703, 624 (2017)

    Article  CAS  Google Scholar 

  10. M. Asfaram, M.H.A. Ghaedi, M.H.A. Goudarzi, S. Hajatid, Eng. Chem. Res. 54, 377 (2017)

    CAS  Google Scholar 

  11. H. Mazaheri, M. Ghaedi, M.H.A. Azqhandi, A. Asfaram, Phys. Chem. Chem. Phys. 19, 11299 (2017)

    Article  CAS  Google Scholar 

  12. F.U. Khan, Y. Chen, N.U. Khan, Z.H.U. Khan, A.U. Khan, A. Ahmad, K. Tahir, L. Wang, M.R. Khan, P. Wan, J. Photochem. Photobiol. (2016). https://doi.org/10.1016/j.jphotobiol.2016.09.042

    Article  Google Scholar 

  13. C. Tamuly, I. Saikia, M. Hazarika, M.R. Das, RSC Adv. 4, 53229 (2014)

    Article  CAS  Google Scholar 

  14. O.A. Zelekew, D.H. Kuo, Phys. Chem. Chem. Phys. 18, 4405 (2016)

    Article  Google Scholar 

  15. A. Sharma, R.K. Dutta, A. Chowdhury, D. Das, A. Goyal, A. Kapoor, Appl. Catal. A Gen. (2017). https://doi.org/10.1016/j.apcata.2017.06.037

    Article  Google Scholar 

  16. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Mater. Sci. Semi. Process. 22, 83 (2014)

    Article  CAS  Google Scholar 

  17. A.K. Abay, X. Chen, D.-H. Kuo, New J. Chem. (2017). https://doi.org/10.1039/c7nj00676d

    Article  Google Scholar 

  18. R.N. Mariammal, K. Ramachandran, G. Kalaiselvan, A. Arumugam, B. Ranganathan, D. Sastikumar, Surf. Sci. 270, 545 (2013)

    Article  CAS  Google Scholar 

  19. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    Article  Google Scholar 

  20. K. VallalPeruman, M. Mahendran, S. Seenithurai, R. Chokkalingam, R.K. Singh, V. Chandrasekaran, J. Phys. Chem. Sol. 71, 1540 (2010)

    Article  CAS  Google Scholar 

  21. J. Zhao, R. Liu, Z. Hua, Super Microstruct. (2017). https://doi.org/10.1016/j.spmi.2015.01.017

    Article  Google Scholar 

  22. S. Ramya, R. Gobi, N. Shanmugam, G. Viruthagiri, N. Kannadasan, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-015-3714-8

    Article  Google Scholar 

  23. Y. Yuanlie, J. Zhang, Mater. Lett. 63, 1840 (2009)

    Article  Google Scholar 

  24. S. Kuriakose, D.K. Avasthi, S. Mohapatra, Beilstein J. Nanotechnol. 6, 928 (2015)

    Article  CAS  Google Scholar 

  25. A.A. Manoharan, R. Chandramohan, R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, J. Mol. Struct. (2018). https://doi.org/10.1016/j.molstruc.2018.06.018

    Article  Google Scholar 

  26. S. Rehman, A. Mumtaz, S.K. Hasanain, J. Nano. Res. 13, 2497 (2011)

    Article  CAS  Google Scholar 

  27. M.H. Chou, S.B. Liu, C.Y. Huang, S.Y. Wu, C.L. Cheng, Appl. Surf. Sci. 254, 7539 (2008)

    Article  CAS  Google Scholar 

  28. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61, 11093 (2000)

    Article  CAS  Google Scholar 

  29. G. Adamopoulos, A. Bashir, W.P. Gillin, S. Georgakopoulos, M. Shkunov, M.A. Baklar, N. Stingelin, D.D.C. Bradley, T.D. Anthopoulos, Adv. Funct. Mater. 21, 525 (2011)

    Article  CAS  Google Scholar 

  30. Z. Yang, C.K. Chiang, H.T. Chang, Nano Technol. 19, 25604 (2008)

    CAS  Google Scholar 

  31. K. Das, S.K. De, J. Lumin. 129, 1015 (2009)

    Article  CAS  Google Scholar 

  32. A. El-Trass, H. El-Shamy, I. El-Mehasseb, M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012)

    Article  CAS  Google Scholar 

  33. A.D. Raj, M. Jeeva, R. Purusothaman, G.V. Prabhu, M. Vimalan, I. VethaPotheher, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6476-7

    Article  Google Scholar 

  34. A. Balarew, R. Dehlew, Solid State Chem. 55, 1 (1984)

    Article  Google Scholar 

  35. K. Pandurangan, S. Suresh, J. Mater. (2014). https://doi.org/10.1155/2014/362678

    Article  Google Scholar 

  36. S. Abed, H. Bougharraf, Z. Bouchouit, B. Sofiani, M.S. Derkowska-Zielinska, B. Aida, S. Sahraoui, Suplatt. Micstruct. 85, 370 (2015)

    CAS  Google Scholar 

  37. P. Vijayakumar, G. Anandha Babu, P. Ramasamy, Mater. Res. Bull. 47, 957 (2012)

    Article  CAS  Google Scholar 

  38. N. SenthilKumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan, I. Vetha Potheher, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8223-5

    Article  Google Scholar 

  39. Z.D. Pozun, S.E. Rodenbusch, E. Keller, K. Tran, W. Tang, K.J. Stevenson, G. Henkelman, J. Phys. Chem. C 117, 7598 (2013)

    Article  CAS  Google Scholar 

  40. J.-L. Liu, L.-Z. Fan, X. Qu, Electrochim. Acta 66, 302 (2012)

    Article  CAS  Google Scholar 

  41. A. Sun et al., Appl. Surf. Sci. 280, 693 (2013)

    Article  CAS  Google Scholar 

  42. J.F. Huang, S. Vongehr, S.C. Tang, H.M. Lu, X.K. Meng, J. Phys. Chem C. 114, 15005 (2010)

    Article  CAS  Google Scholar 

  43. N.K.R. Bogireddy, K.K. Hoskote Anand, B.K. Mandal, J. Mol. Liq. 211, 868 (2015)

    Article  CAS  Google Scholar 

  44. R.B. Ganapuram, M. Alle, R. Dadigala, A. Dasari, V. Maragoni, V. Guttena, Inter. Nano Lett. 5, 215 (2015)

    Article  CAS  Google Scholar 

  45. J. Saha, A. Begum, A. Mukherjee, S. Kumar, Sustain. Environ. Res. 27, 245 (2017)

    Article  CAS  Google Scholar 

  46. Y.T. Woo, D.Y. Lai, Patty’s Toxi. (2001). https://doi.org/10.1002/0471435139.tox058.pub2

    Article  Google Scholar 

  47. M. Nasrollahzadeh, S.M. Sajadi, J. Colloid Interface Sci. 457, 141 (2015)

    Article  CAS  Google Scholar 

  48. G. Manjari, S. Saran, T. Arun, A. Vijaya Bhaskara Rao, S.P. Devipriya, J. Saudi Chem. Soc. (2017). https://doi.org/10.1016/j.jscs.2017.02.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vetha Potheher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramothkumar, A., Senthilkumar, N., Mercy Gnana Malar, K.C. et al. A comparative analysis on the dye degradation efficiency of pure, Co, Ni and Mn-doped CuO nanoparticles. J Mater Sci: Mater Electron 30, 19043–19059 (2019). https://doi.org/10.1007/s10854-019-02262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02262-4

Navigation