Skip to main content
Log in

Synthesis, characterization, and application of CuO nanoparticle 2D doped with Zn2+ against photodegradation of organic dyes (MB & MO) under sunlight

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocomposites CuO and CuO/CuZnO were synthesized by chemical deposition because this method is faster, easier, and cheaper than other methods. FESEM analysis showed that synthesized nanoparticles have a rice-like structure, TEM micrograph showed that they crystallized in a 2D structure, and EDS element mapping showed that the elements are homogeneously scattered throughout the structure. The doped Zn elements in nanocomposite CuO/CuZnO form the Cu–O–Zn structures. Thermal analysis showed that the compound CuO/CuZnO has a high thermal stability. The photocatalytic activity of the compound is very effective in cationic (MB) and anionic (MO) degradation of colored pollutants in the presence of H2O2 and under sunlight. A kinetic study showed that degradation follows the first-order kinetics. Synthesized nanoparticles have good catalytic performance with high repeatability to the fifth cycle of degradation reaction. Therefore, these nanocomposites are good candidates for color degradation with a good efficiency in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Li, Y. Che, Y. Lv, F. Liu, Y. Wang, C. Zhao, C. Liu, Synthesis and characterization of CuZnO@GO nanocomposites and their enhanced antibacterial activity with visible light. J. Sol-Gel Sci. Technol. 89, 672–684 (2019). https://doi.org/10.1007/s10971-018-4872-y

    Article  CAS  Google Scholar 

  2. J.W. Shi, J.T. Zheng, Y. Hu, Y.C. Zhao, Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2. Mater. Chem. Phys. 106, 247–249 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.042

    Article  CAS  Google Scholar 

  3. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 33, 4725–4731 (2013). https://doi.org/10.1016/j.msec.2013.07.034

    Article  CAS  Google Scholar 

  4. L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, D. Xiong, Synthesis of 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. J. Phys. Chem. C 122(17), 9531–9539 (2018). https://doi.org/10.1021/acs.jpcc.8b01933

    Article  CAS  Google Scholar 

  5. J. Ran, H. Chen, X. Bai, Sh. Bi, H. Jiang, G. Cai, D. Cheng, X. Wang, Immobilizing CuO/BiVO4 nanocomposite on PDA-templated cotton fabric for visible light photocatalysis, antimicrobial activity and UV protection. Appl. Surf. Sci. 493, 1167–1176 (2019). https://doi.org/10.1016/j.apsusc.2019.07.137

    Article  CAS  Google Scholar 

  6. K. Rajendaran, R. Muthuramalingam, S. Ayyadurai, Green synthesis of Ag-Mo/CuO nanoparticles using Azadirachta indica leaf extracts to study its solar photocatalytic and antimicrobial activities. Mater. Sci. Semicond. Process 91, 230–238 (2019). https://doi.org/10.1016/j.mssp.2018.11.021

    Article  CAS  Google Scholar 

  7. C.S. Ponseca Jr., P. Chabera, J. Uhlig, P. Persson, V. Sundstrom, Ultrafast electron dynamics in solar energy conversion. Am. Chem. Soc. 16, 10940–11024 (2017). https://doi.org/10.1021/acs.chemrev.6b00807

    Article  CAS  Google Scholar 

  8. Y.T. Prabhu, V.N. Rao, M.V. Shankar, B. Sreedhar, U. Pal, Facile hydrothermal synthesis of CuO@ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New J. Chem. 43, 6794–6805 (2019). https://doi.org/10.1039/C8NJ06056H

    Article  CAS  Google Scholar 

  9. M. Pirhashemi, A. Habibi-Yangjeh, Sh. Rahim Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018). https://doi.org/10.1016/j.jiec.2018.01.012

    Article  CAS  Google Scholar 

  10. M.H. Barzega, M. Ghaedi, V. Madadi Avargani, M.M. Sabzehmeidani, F. Sadeghfar, R. Jannesar, Electrochemical synthesis and efficient photocatalytic degradation of azo dye alizarin yellow R by Cu/CuO nanorods under visible LED light irradiation using experimental design methodology. Polymer 158, 506–514 (2019). https://doi.org/10.1016/j.poly.2018.10.040

    Article  CAS  Google Scholar 

  11. W. Wang, Y. Ye, J. Feng, M. Chi, J. Guo, Y. Yin, Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew. Chem. Int. Ed. 54, 1321–1326 (2015). https://doi.org/10.1002/anie.201410408

    Article  CAS  Google Scholar 

  12. J. Chen, J. Cen, X. Xu, X. Li, The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol. 6, 349–362 (2016). https://doi.org/10.1039/C5CY01289A

    Article  CAS  Google Scholar 

  13. M.P. Rao, P. Sathishkumar, R.V. Mangalaraja, A.M. Asiri, P. Sivashanmugam, S. Anandan, Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes. J. Environ. Chem. Eng. 6(2), 2003–2010 (2018). https://doi.org/10.1016/j.jece.2018.03.008

    Article  CAS  Google Scholar 

  14. T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermalmethod and its properties. Appl. Surf. Sci. 311, 602–608 (2014). https://doi.org/10.1016/j.apsusc.2014.05.116

    Article  CAS  Google Scholar 

  15. D.C.T. Nguyen, K.Y. Cho, W.C. Oh, Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes. Sep. Purif. Technol. 211, 646–657 (2019). https://doi.org/10.1016/j.seppur.2018.10.009

    Article  CAS  Google Scholar 

  16. R. Liu, J. Yin, W. Du, F. Gao, Y. Fan, Q. Lu, Monodisperse CuO hard and hollow nanospheres as visible-light photocatalysts. Eur. J. Inorg. Chem. 8, 1358–1362 (2013). https://doi.org/10.1002/ejic.201200975

    Article  CAS  Google Scholar 

  17. M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, Photocatalytic degradation of Tartrazine dye using CuO straw-sheaf-like nanostructures. Waste Sci. Technol. 75(6), 1421–1430 (2017). https://doi.org/10.2166/wst.2017.008

    Article  CAS  Google Scholar 

  18. J.S. Lee, A. Katoch, J.H. Kim, S.S. Kim, Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sens. Actuator B 222, 307–314 (2016). https://doi.org/10.1016/j.snb.2015.08.037

    Article  CAS  Google Scholar 

  19. S.H. Kim, A. Umar, S.W. Hwang, Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application. Ceram. Int. 41, 9468–9475 (2015). https://doi.org/10.1016/j.ceramint.2015.04.003

    Article  CAS  Google Scholar 

  20. C. Dong, X. Xing, N. Chen, X. Liu, Y. Wang, Biomorphic synthesis of hollow CuO fibers for low-ppm-leveln-propanol detection via a facile solution combustion method. Sens. Actuator. B 230, 1–8 (2016). https://doi.org/10.1016/j.snb.2016.01.043

    Article  CAS  Google Scholar 

  21. A.N. Thakur, K. Kumar, K.K. Sharma, Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorg. Nano-Metal Chem. 50, 933–943 (2020). https://doi.org/10.1080/24701556.2020.1728554

    Article  CAS  Google Scholar 

  22. H. Hamrouni, A. Lachheb, Houas, Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites. Mater. Sci. Eng. B 178, 1371–1379 (2013). https://doi.org/10.1016/j.mseb.2013.08.008

    Article  CAS  Google Scholar 

  23. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV–vis photocatalytic activities. Sep. Purif. Technol. 132, 378–387 (2014). https://doi.org/10.1016/j.seppur.2014.05.043

    Article  CAS  Google Scholar 

  24. H. Wang, L. Zhang, Z. Chen, J. Hu, Sh. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev 43, 5234–5244 (2014). https://doi.org/10.1039/C4CS00126E

    Article  CAS  Google Scholar 

  25. S. Iqbal, A. Bahadur, Sh. Anwer, Sh. Ali, R.M. Irfan, H. Li, M. Shoaib, M. Raheel, T.A. Anjum, M. Zulqarnain, Effect of temperature and reaction time on the morphology of L-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation Study of Methyl orange dye under visible light. Coll. Surf. A 601, 124984 (2020). https://doi.org/10.1016/j.colsurfa.2020.124984

    Article  CAS  Google Scholar 

  26. S. Iqbal, Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution. Appl. Catal. B Environ. 274, 119097 (2020). https://doi.org/10.1016/j.apcatb.2020.119097

    Article  CAS  Google Scholar 

  27. A. Shah, M.A. Bhatti, A. Tahira, A.D. Chandio, I.A. Channa, A.G. Sahito, S. Ebrahim, M. Willander, O. Nur, Z.H. Ibupoto, Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram. Int. 46, 9997–10005 (2020). https://doi.org/10.1016/j.ceramint.2019.12.024

    Article  CAS  Google Scholar 

  28. A.A.M. Sakib, S.M. Masum, J. Hoinkis, R. Islam, M. Mola, Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Comput. Sci. 3, 91 (2019). https://doi.org/10.3390/jcs3030091

    Article  CAS  Google Scholar 

  29. T.T. Minh, N.T.T. Tu, T.T.V. Thi, L.T. Hoa, H.T. Long, N.H. Phong, T.L.M. Pham, D.Q. Khieu, Synthesis of porous octahedral ZnO/CuO composites from Zn/Cu-based MOF-199 and their applications in visible-light-driven photocatalytic degradation of dyes. J. Nanomater. 3, 1–16 (2019). https://doi.org/10.1155/2019/5198045

    Article  CAS  Google Scholar 

  30. A.G. Acedo-Mendoza, A. Infantes-Molina, D. Vargas-Hernández, C.A. Chávez-Sánchez, E. Rodríguez-CastellÓn, J.C. Tánori-CÓrdova, Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature. Mater. Sci. Semicond. Process. 119, 105257 (2020). https://doi.org/10.1016/j.mssp.2020.105257

    Article  CAS  Google Scholar 

  31. J.E. Lee, Ch.K. Lim, H.J. Park, H. Song, S.Y. Choi, D.S. Lee, ZnO-CuO core-hollow cube nanostructures for highly sensitive acetone gas sensors at a ppb level. ACS Appl. Mater. Int. 12(31), 35688–35697 (2020). https://doi.org/10.1021/acsami.0c08593

    Article  CAS  Google Scholar 

  32. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl. Surf. Sci. 317, 414–421 (2014). https://doi.org/10.1016/j.apsusc.2014.08.144

    Article  CAS  Google Scholar 

  33. Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, Fabrication of diverse CuO nanostructures via hydrothermal method and their photocatalytic properties. J. Mater. Sci.: Mater. Electron. 27, 6918–6924 (2016). https://doi.org/10.1007/s10854-016-4645-8

    Article  CAS  Google Scholar 

  34. N. Ghobadi, S. Chobin, S. Rezaee, R. Shakoury, Tuning the optical and photocatalytic features of copper selenide prepared by chemical solution deposition method. Surf. Int. 21, 100706 (2020). https://doi.org/10.1016/j.surfin.2020.100706

    Article  Google Scholar 

  35. Z. Zhang, Y. Yuan, L. Liang, Y. Cheng, G. Shi, L. Jin, Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J. Hazard. Mater. 158, 517–522 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.118

    Article  CAS  Google Scholar 

  36. M.U. Anu Prathap, B. Kaur, R. Srivastava, Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J. Coll. Int. Sci. 370, 144–154 (2012). https://doi.org/10.1016/j.jcis.2011.12.074

    Article  CAS  Google Scholar 

  37. S. Iqbal, A. Bahadur, S. Anwer, M. Shoaib, G. Liu, H. Li, M. Raheel, M. Javed, B. Khalid, Design novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates and study the effect of CuS morphologies on dye degradation rate under visible light. CrystEngComm 22, 4162–4173 (2020). https://doi.org/10.1039/D0CE00421A

    Article  CAS  Google Scholar 

  38. Z. Li, N. Wang, Z. Lin, J. Wang, W. Liu, K. Sun, Y.Q.R. Fu, Z. Wang, Room-temperature high performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl. Mater. Int. 8(32), 20962–20968 (2016). https://doi.org/10.1021/acsami.6b02893

    Article  CAS  Google Scholar 

  39. C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation. Appl. Surf. Sci. 469, 276–282 (2019). https://doi.org/10.1016/j.apsusc.2018.11.054

    Article  CAS  Google Scholar 

  40. Y. Wang, Q. Ma, H. Jia, Z. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization. Ceram. Int. 42, 10751–10757 (2016). https://doi.org/10.1016/j.ceramint.2016.03.200

    Article  CAS  Google Scholar 

  41. S. Iqbal, M. Javed, A. Bahadur, M.A. Qamar, M. Ahmad, M. Shoaib, M. Raheel, N. Ahmad, M.B. Akbar, H. Li, Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light. J. Mater. Sci.: Mater. Electron. 31, 8423–8435 (2020). https://doi.org/10.1007/s10854-020-03377-9

    Article  CAS  Google Scholar 

  42. A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012). https://doi.org/10.1016/j.apsusc.2011.11.025

    Article  CAS  Google Scholar 

  43. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 34, 740–745 (2013). https://doi.org/10.1016/j.egypro.2013.06.808

    Article  CAS  Google Scholar 

  44. M. Forouzani, H.R. Mardani, M. Ziari, A. Malekzadeh, P. Biparva, Comparative study of oxidation of benzyl alcohol: influence of Cu-doped metal cation on nano ZnO catalytic activity. Chem. Eng. J. 275, 220–226 (2015). https://doi.org/10.1016/j.cej.2015.04.032

    Article  CAS  Google Scholar 

  45. S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan, Tuning the morphology of Cr2O3:CuO (50:50) thin films by RF magnetron sputtering for room temperature sensing application. Appl. Surf. Sci. 466, 703–714 (2019). https://doi.org/10.1016/j.apsusc.2018.10.096

    Article  CAS  Google Scholar 

  46. M. Kantcheva, FT-IR spectroscopic investigation of the reactivity of NOx species adsorbed on Cu2+/ZrO2 and CuSO4/ZrO2 catalysts toward decane. Appl. Catal. B: Environ. 42, 89–109 (2003). https://doi.org/10.1016/S0926-3373(02)00218-7

    Article  CAS  Google Scholar 

  47. S. Iqbal, R.A. Khan, M.J. Iqbal, M. Waqas, J. Nisar, F. Shah, A.R. Khan, Influence of Fe2+ and Ni2+ contents on the optical and electrical properties of ZnS quantum dots. J. Mater. Sci.: Mater. Electron. 28, 4449–4457 (2017). https://doi.org/10.1007/s10854-016-6074-0

    Article  CAS  Google Scholar 

  48. S. Iqbal, Z. Pan, K. Zhou, Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures. Nanoscale 9, 6638–6642 (2017). https://doi.org/10.1039/C7NR01705G

    Article  CAS  Google Scholar 

  49. P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Effect of NaOH molar concentration on morphology, optical and ferroelectric properties of hydrothermally grown CuO nanoplates. Mater. Sci. Semicond. Process. 38, 72–80 (2015). https://doi.org/10.1016/j.mssp.2015.04.006

    Article  CAS  Google Scholar 

  50. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  51. S. Iqbal, A. Bahadur, S. Anwer, S. Ali, A. Saeed, R.M. Irfan, H. Li, M. Javed, M. Raheel, M. Shoaib, Shape and phase-controlled synthesis of specially designed 2D morphologies of L-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum. Appl. Surf. Sci. 526, 46691 (2020). https://doi.org/10.1016/j.apsusc.2020.146691

    Article  CAS  Google Scholar 

  52. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, M.B. Akbar, Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. A: Chem. 401, 112776 (2020). https://doi.org/10.1016/j.jphotochem.2020.112776

    Article  CAS  Google Scholar 

  53. X. Yang, Y. Wang, Z. Wang, X. Lv, H. Jia, J. Kong, M. Yu, Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property. Ceram. Int. 42, 7192–7202 (2016). https://doi.org/10.1016/j.ceramint.2016.01.109

    Article  CAS  Google Scholar 

  54. L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methylorange by ZnO: Eu nanoparticles. Appl. Catal. B: Environ. 203, 740–752 (2017). https://doi.org/10.1016/j.apcatb.2016.10.063

    Article  CAS  Google Scholar 

  55. S. Verma, B.T. Rao, J. Jayabalan, S.K. Rai, D.M. Phase, A.K. Srivastava, R. Kaul, Studies on growth of Au cube-ZnO core-shell nanoparticles for photocatalytic degradation of methylene blue and methyl orange dyes in aqueous media and in presence of different scavengers. J. Environ. Chem. Eng. 7, 103209 (2019). https://doi.org/10.1016/j.jece.2019.103209

    Article  CAS  Google Scholar 

  56. B. Paul, D.D. Bhuyan, S.S. Purkayastha, S. Dhar, Behera, Facile synthesis of spinel CuCr2O4 nanoparticles and studies of their photocatalytic activity in degradation of some selected organic dyes. J. Alloys Compd. 648, 629–635 (2015). https://doi.org/10.1016/j.jallcom.2015.07.012

    Article  CAS  Google Scholar 

  57. S. Senobari, A.R. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: designing the experiments. J. Mol. Liq. 261, 208–217 (2018). https://doi.org/10.1016/j.molliq.2018.04.028

    Article  CAS  Google Scholar 

  58. P. Deka, R.C. Deka, P. Bharali, Porous CuO nanostructure as a reusable catalyst for oxidative degradation of organic water pollutants. New J. Chem. 40, 348–357 (2016). https://doi.org/10.1039/c5nj02515j

    Article  CAS  Google Scholar 

  59. J. Li, M. Cui, Z. Guo, Z. Liu, Z. Zhu, Synthesis of dumbbell-like CuO–BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Mater. Lett. 130, 36–39 (2014). https://doi.org/10.1016/j.matlet.2014.05.084

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors of this article express their gratitude for Sistan and Baluchestan University financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Rezvani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memar, M., Rezvani, A.R. & Saheli, S. Synthesis, characterization, and application of CuO nanoparticle 2D doped with Zn2+ against photodegradation of organic dyes (MB & MO) under sunlight. J Mater Sci: Mater Electron 32, 2127–2145 (2021). https://doi.org/10.1007/s10854-020-04979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04979-z

Navigation