Skip to main content

Advertisement

Log in

Preparation of high strain polyaniline/polyvinyl alcohol composite and its applications in stretchable supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) is one of the most extensively used conductive polymers. But its development and application has been restricted owing to the poor mechanical properties. Here, PANI/polyvinyl alcohol (PVA) composite with improved mechanical performance was prepared by mixing PANI hydrogel and PVA hydrogel. Due to excellent stretching capacity, it can be used as the electrode material for the high strain energy storage device. Therefore, a high strain all-solid-state PANI/PVA supercapacitor was further assembled by this flexible composite. The supercapacitor exhibits a high specific capacitance and excellent electrochemical stability even under tensile strain and over multiple stretching cycles. Meanwhile, the effect of stretching on the electrochemical properties was explored through theoretical simulation analysis and simulation calculation. This study could provide a theoretical reference for the modification of PANI and designing the scalable supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Mahdavi, P.K. Kahriz, H. Gholipour-Ranjbar, T. Shahalizade, Synthesis and performance study of amino functionalized graphene aerogel grafted with polyaniline nanofibers as an efficient supercapacitor material. J. Mater. Sci. Mater. Electron. 28, 4295 (2016)

    Article  Google Scholar 

  2. J. Bhadra, D. Sarkar, Self-assembled polyaniline nanorods synthesized by facile route of dispersion polymerization. Mater. Lett. 63, 69 (2009)

    Article  Google Scholar 

  3. S. Dhibar, S. Sahoo, C.K. Das, R. Singh, Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications. J. Mater. Sci. Mater. Electron. 24, 576 (2012)

    Article  Google Scholar 

  4. N. Badi, S. Khasim, A.S. Roy, Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J. Mater. Sci. Mater. Electron. 27, 6249 (2016)

    Article  Google Scholar 

  5. S. Kumar, S.K. Sharma, Large scale synthesis of polyaniline nanowires and their characterization. J. Mater. Sci. Mater. Electron. 23, 1260 (2011)

    Article  Google Scholar 

  6. H. Guo, W. He, Y. Lu, X. Zhang, Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon 92, 133 (2015)

    Article  Google Scholar 

  7. K. Wang, X. Zhang, C. Li, H. Zhang, X. Sun, N. Xu, Y. Ma, Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. J. Mater. Chem. A 2, 19726 (2014)

    Article  Google Scholar 

  8. S. Naficy, J.M. Razal, G.M. Spinks, G.G. Wallace, P.G. Whitten, Electrically conductive, tough hydrogels with pH sensitivity. Chem. Mater. 24, 3425 (2012)

    Article  Google Scholar 

  9. H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 1, 1233 (2012)

    Article  Google Scholar 

  10. C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025 (2010)

    Article  Google Scholar 

  11. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)

    Article  Google Scholar 

  12. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651 (2008)

    Article  Google Scholar 

  13. T.L. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508 (2015)

    Article  Google Scholar 

  14. P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, Ground nut seed like hydrophilic polypyrrole based thin film as a supercapacitor electrode. J. Mater. Sci. Mater. Electron. 27, 3499 (2015)

    Article  Google Scholar 

  15. B.D. Gates, Flexible electronics. Science 323, 1566 (2009)

    Article  Google Scholar 

  16. C.S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A.B. Dalton, J.N. Coleman, Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8, 8819 (2014)

    Article  Google Scholar 

  17. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603 (2010)

    Article  Google Scholar 

  18. T. Cheng, Y. Zhang, W.Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27, 3349 (2015)

    Article  Google Scholar 

  19. T. Chen, Y. Xue, A.K. Roy, L. Dai, Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8, 1039 (2014)

    Article  Google Scholar 

  20. Z. Zhang, J.L. Deng, X. Yang, Z. He, S. Chen, X. Guan, G. Ren, H.J. Peng, Superelastic supercapacitors with high performances during stretching. Adv. Mater. 27, 356 (2015)

    Article  Google Scholar 

  21. P. Xu, J. Kang, J.-B. Choi, J. Suhr, J. Yu, F. Li, J.-H. Byun, B.-S. Kim, T.-W. Chou, Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano 8, 9437 (2014)

    Article  Google Scholar 

  22. D. Qi, Z. Liu, Y. Liu, W.R. Leow, B. Zhu, H. Yang, J. Yu, W. Wang, H. Wang, S. Yin, X. Chen, Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 27, 5559 (2015)

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  25. A. Varela-Alvarez, J.A. Sordo, G.E. Scuseria, Doping of polyaniline by acid-base chemistry: density functional calculations with periodic boundary conditions. J. Am. Chem. Soc. 127, 11318 (2005)

    Article  Google Scholar 

  26. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255 (1984)

    Article  Google Scholar 

  27. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14497 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zhao, J., Jiang, R. et al. Preparation of high strain polyaniline/polyvinyl alcohol composite and its applications in stretchable supercapacitor. J Mater Sci: Mater Electron 28, 14568–14574 (2017). https://doi.org/10.1007/s10854-017-7320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7320-9

Navigation