Skip to main content
Log in

The effect of Nd 2 O 3 addition on superconducting and structural properties and activation energy calculation of Bi-2212 superconducting system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of Nd 2 O 3 addition on the micro-structural and the superconducting properties of Bi-2212 superconductor ceramics, prepared by solid state reaction method, was analyzed by performing X-ray diffraction (XRD), scanning electronic microscope (SEM), energy dispersive spectroscopy (EDS) and dc Resistivity (ρ-T) measurements. The magnetoresistivity of the samples was measured for different values of the applied magnetic field strengths (0–7 T). Also, the activation energies were calculated using the Arrhenius equation. According to these results, the T offsetc value of the undoped sample was decreased from 79 to 42 K with the growth of magnetic field. In the same way, the activation energy (U o ) values were significantly diminished by the increasing of magnetic field. A similar situation was observed in other doped samples. Activation energy for 0.05 % Nd 2 O 3 doped sample under 7 T magnetic field was 550 J/mol the least. In addition, lattice parameter c, calculated by analysis of XRD data, was decreased with doping while lattice parameter a was increased. SEM analysis shows that particles were shrinking with the addition. When compared with other elements for EDS analyses, it was analyzed an important decrease in the percentage of Sr with the increasing of Nd contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.H. Müller, A.J. Pauza, Physica C 161, 319 (1989)

    Article  Google Scholar 

  2. N. Ghazanfari, A. Kilic, A. Gencer, H. Ozkan, Solid State Commun. 144, 210 (2007)

    Article  Google Scholar 

  3. T. Makise, S. Uchida, S. Horii, J. Shimoyama, K. Kishio, Physica C 460, 772 (2007)

    Article  Google Scholar 

  4. G. Yildirim, Y. Zalaoglu, M. Akdogan, S.P. Altintas, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 24, 2153 (2011)

    Article  Google Scholar 

  5. H. Maeda, Y. Taraka, M. Fukutomi, T. Asano, J. Appl. Phys. 27, L209 (1988)

    Article  Google Scholar 

  6. O. Ozturk, M. Akdogan, C. Terzioglu, A. Gencer, J. Phys: Conf. Ser. 153, 012024 (2009)

    Google Scholar 

  7. L. Pierre, J. Schneck, D. Morin, J.C. Toledona, J. Primot, C. Daguet, H. Savary, J. Appl. Phys. 68, 2296 (1990)

    Article  Google Scholar 

  8. R.K. Nkum, W.R. Datars, Physica C 190, 465 (1992)

    Article  Google Scholar 

  9. K.K. Nanda, M. Muralidhar, V.B. Hari, Physica C 204, 299 (1993)

    Article  Google Scholar 

  10. S. Kambe, Y.C. Guo, S.X. Dou, H.K. Liu, Y. Wakahara, H. Maeda, K. Kakimoto, M. Yavuz, Supercond. Sci. Technol. 11, 1061 (1998)

    Article  Google Scholar 

  11. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C 423, 119 (2005)

    Article  Google Scholar 

  12. V.G. Prabitha, A. Biju, R.G. AbhilashKumar, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, Physica C 433, 28 (2005)

    Article  Google Scholar 

  13. M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961–968 (2012)

    Article  Google Scholar 

  14. T. Mito, A. Sagara, S. Imagawa, S. Yamada, K. Takahata, N. Yanagi, H. Chikaraishi, R. Maekawa, A. Iwamoto, S. Hamaguch, M. Sato, N. Noda, K. Yamauchi, A. Komori, O. Motojima, Fusion Eng. Des. 81, 2389 (2006)

    Article  Google Scholar 

  15. J. Zsako, J. Phys. Chem. 72, 2406–2411 (1968)

    Article  Google Scholar 

  16. G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, Y. Zaloglu, J. Supercond. Nov. Magn. 25, 893–903 (2012)

    Article  Google Scholar 

  17. M. Erdem, O. Ozturk, E. Yucel, S.P. Altintas, A. Varilci, C. Terzioglu, I. Belenli, Phys. B 406, 705–709 (2011)

    Article  Google Scholar 

  18. U. Marvin Herrera, V. Roland Sarmago, Ceram. Int. 30, 1611–1614 (2004)

    Article  Google Scholar 

  19. S. Altin, M.A. Aksan, M.E. Yakinci, Solid State Sci. 13, 879–886 (2011)

    Article  Google Scholar 

  20. I. Karaca, S. Celebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003)

    Article  Google Scholar 

  21. V. Mihalache, G. Aldica, J. Optoelectron. Adv. M. 9, 919–922 (2007)

    Google Scholar 

  22. M. Okada, Supercond. Sci. Technol. 13, 29 (2000)

    Article  Google Scholar 

  23. D. Yegen, A. Varilci, M. Yılmazlar, C. Terzioglu, I. Belenli, Physica C 466, 5–10 (2007)

    Article  Google Scholar 

  24. O. Ozturk, E. Asikuzun, G. Yildirim, J. Mater. Sci. Mater. Elect. 24, 1274–1281 (2013)

    Article  Google Scholar 

  25. M. Runde, IEEE T. Appl. Supercond. 5, 813 (1995)

    Article  Google Scholar 

  26. A. Godeke, D. Cheng, D.R. Dietderich, C.D. English, H. Felice, C.R. Hannaford, S.O. Prestemon, G. Sabbi, R.M. Scanlan, Y. Hikichi, J. Nishioka, T. Hasegawa, IEEE T. Appl. Supercond. 18, 516 (2008)

    Article  Google Scholar 

  27. L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma, Y. Qitan, Mater. Lett. 58, 3301–3303 (2004)

    Article  Google Scholar 

  28. J. Jiang, Mater. Lett. 61, 3239–3242 (2007)

    Article  Google Scholar 

  29. O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz, C. Terzioglu, J. Mater. Sci. Mater. Elect. 23, 511–519 (2012)

    Article  Google Scholar 

  30. J. Torrens-Serra, I. Peral, J. Rodriguez-Viejo, M.T. Clavaguera-Mora, J. Non-Cryst. Solids 358, 107–113 (2012)

    Article  Google Scholar 

  31. O. Ozturk, E. Asikuzun, S. Kaya, M. Coskunyurek, G. Yildirim, M. Yilmazlar, C. Terzioglu, J. Supercond. Nov. Magn. 25, 2481–2487 (2012)

    Article  Google Scholar 

  32. A. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy. Compd. 454, 46–51 (2008)

    Article  Google Scholar 

  33. M.F. Azzouz, A. Mchirgui, B. Yangui, C. Boulesteix, B.M. Salem, Physica C 356, 83–86 (2001)

    Article  Google Scholar 

  34. K. Kocabas, S. Sakiroglu, M. Ciftcioglu, I. Ercan, H. Epik, O. Bilgili, J. Supercond. Nov. Magn. 22, 749–754 (2009)

    Article  Google Scholar 

  35. M.R. Persland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Floer, Physica C 176, 95–105 (1991)

    Article  Google Scholar 

  36. T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, Thin Solid Films 516, 2913–2916 (2008)

    Article  Google Scholar 

  37. D. Yazici, M. Erdem, B. Ozcelik, J. Supercond. Nov. Magn. 25, 1811–1816 (2012)

    Article  Google Scholar 

  38. G.L. Bhalla, A. Malik Pratima, K.K. Singh, Physica C 391, 17–24 (2003)

    Article  Google Scholar 

  39. J.S. Moodera, R. Meservey, J.E. Tkaczyk, C.X. Hao, G.A. Gibson, P.M. Tedrow, Phys. Rev. B 37, 619–622 (1988)

    Article  Google Scholar 

  40. N.P. Liyanawaduge, A. Kumar, S. Kumar, B.S.B. Karunarathne, V.P.S. Awana, J. Supercond. Nov. Magn. 25, 31–37 (2012)

    Article  Google Scholar 

  41. E. Govea-Alcaide, I. Garcia-Fornaris, P. Mune, R.F. Jardim, Eur. Phys. J. B 58, 373–378 (2007)

    Article  Google Scholar 

  42. J. Albrecht, C.H. Jooss, R. Warthmann, A. Forkl, H. Kronmüller, Phys. Rev. B 57, 10332–10335 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ozturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, O., Asikuzun, E., Coskunyurek, M. et al. The effect of Nd 2 O 3 addition on superconducting and structural properties and activation energy calculation of Bi-2212 superconducting system. J Mater Sci: Mater Electron 25, 444–453 (2014). https://doi.org/10.1007/s10854-013-1608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1608-1

Keywords

Navigation