Skip to main content
Log in

Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This comprehensive study reports the role of annealing temperature on the microstructural, superconducting and mechanical characteristics of the Gd diffused Bi-2223 superconducting ceramics produced by the conventional solid-state reaction route at 840 °C for the annealing duration of 48 h. For the material characterization, the standard experimental methods such as dc resistivity (ρ-T), transport critical current density, X-ray powder diffraction, scanning electron microscopy and Vickers microhardness measurements are performed systematically. All the results obtained show that all the measured characteristic properties, being in charge of the applications in the industry, engineering and technology, improve until a certain diffusion annealing temperature of 800 °C beyond which they tend to degrade considerably. The increase in the properties is mostly related to the transition from the inherent overdoped state of the pure Bi-2223 material to optimum doped state with the diffusion annealing temperature, confirming the penetration of the sufficient Gd nanoparticles into the crystal structure. On the other hand, the suppression in the superconducting properties stems from the appearance of the porosity, defects, disorder and localization problem in the polycrystalline Bi-2223 superconducting matrix. This is attributed to the decrement of the average crystallite size and mobile hole concentration in the Cu–O2 layers and especially the retrogression of the crystallinity in the system. As for the mechanical characteristics, Vickers microhardness measurements exerted in the applied indentation test load range of 0.245–2.940 N indicate that the Gd diffused bulk superconducting samples exhibit the typical indentation size effect behavior. With the enhancement in the annealing temperature up to 800 °C, the significant increase in the elastic modulus, yield strength and fracture toughness is one of the most striking points in the paper. The long and short of it is that the excess diffusion annealing temperature damages the fundamental characteristics of the Bi-2223 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Runde, IEEE Trans. Appl. Supercond. 5, 813–816 (1995)

    Article  Google Scholar 

  2. A. Godeke, D. Cheng, D.R. Dietderich, C.D. English, H. Felice, C.R. Hannaford, S.O. Prestemon, G. Sabbi, R.M. Scanlan, Y. Hikichi, J. Nishioka, T. Hasegawa, IEEE Trans. Appl. Supercond. 18, 516–519 (2008)

    Article  CAS  Google Scholar 

  3. S.E. Mousavi Ghahfarokhi, M. Zargar Shoushtari, Phys. B 405, 4643–4649 (2010)

    Article  CAS  Google Scholar 

  4. S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 847–856 (2012)

    Article  CAS  Google Scholar 

  5. H. Zhang, H. Sato, Phys. Rev. Lett. 70, 1697–1699 (1993)

    Article  CAS  Google Scholar 

  6. G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci: Mater. El. 23, 928–935 (2012)

    Article  CAS  Google Scholar 

  7. C.K. Rhee, C.J. Kim, H.G. Lee, I.H. Kuk, J.M. Lee, I.S. Chang, C.S. Rim, P.S. Han, S.I. Pyun, D.Y. Won, Jpn. J. Appl. Phys. 28, L1137–L1139 (1989)

    Article  CAS  Google Scholar 

  8. K.A. Sarkar, I. Maartense, T.L. Peterson, B. Kumar, J. Appl. Phys. 66, 3717–3722 (1989)

    Article  CAS  Google Scholar 

  9. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 25, 381–390 (2012)

    Article  CAS  Google Scholar 

  10. M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu, J. Mater. Sci: Mater. El. 23, 1965–1970 (2012)

    Article  CAS  Google Scholar 

  11. M. Dogruer, F. Karaboga, G. Yildirim, C. Terzioglu, O. Ozturk, J. Mater. Sci: Mater. El. (2013). doi:10.1007/s10854-013-1152-z

    Google Scholar 

  12. P.B. Allen, Y.E. Picket, H. Krakauer, Phy. Rev. B 37, 7482–7490 (1988)

    Article  CAS  Google Scholar 

  13. S. Martin, M. Gurvitch, C.E. Rice, A.F. Hebard, P.L. Gammel, R.M. Fleming, A.T. Fiory, Phys. Rev. B 39, 9611–9613 (1989)

    Article  CAS  Google Scholar 

  14. D.M. Newns, P.C. Pattnaik, C.C. Tsuei, Phys. Rev. B 43, 3075–3084 (1991)

    Article  Google Scholar 

  15. K. Levin, J.H. Kim, J.P. Lu, Q. Si, Physica C 175, 449–522 (1991)

    Article  CAS  Google Scholar 

  16. P.A. Lee, N. Read, Phys. Rev. Lett. 58, 2691–2694 (1987)

    Article  CAS  Google Scholar 

  17. O. Gorur, C. Terzioglu, A. Varilci, M. Altunbas, Supercond. Sci. Technol. 18, 1233–1237 (2005)

    Article  CAS  Google Scholar 

  18. M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, J. Mater. Sci: Mater. El. 24, 896–905 (2013)

    Article  CAS  Google Scholar 

  19. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 2725–2728 (2008)

    Article  CAS  Google Scholar 

  20. G. Yildirim, E. Yucel, S. Bal, M. Dogruer, A. Varilci, M. Akdogan, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 231–237 (2012)

    Article  CAS  Google Scholar 

  21. A. Biju, R.P. Aloysius, U. Syamaprasad, Supercond. Sci. Technol. 18, 1454–1459 (2005)

    Article  CAS  Google Scholar 

  22. V.G. Prabitha, A. Biju, R.G. Abhilashkumar, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, Physica C 433, 28–36 (2005)

    Article  CAS  Google Scholar 

  23. N.T. Mua, A. Sundaresan, N.K. Man, D.D. Dung, Bull. Mater. Sci. 2013; In press

  24. K. Kocabas, O. Ozkan, O. Bilgili, Y. Kadioglu, H. Yılmaz, J. Supercond. Nov. Magn. 23, 1485–1492 (2010)

    Article  CAS  Google Scholar 

  25. A. Ianculescu, M. Gartner, B. Despax, V. Bley, Th Lebey, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344–348 (2006)

    Article  CAS  Google Scholar 

  26. M. Dogruer, O. Gorur, F. Karaboga, G. Yildirim, C. Terzioglu, Powder Technol. 246, 553–560 (2013)

    Article  CAS  Google Scholar 

  27. G. Yildirim, S. Bal, A. Varilci, J. Supercond. Nov. Magn. 25, 1655–1663 (2012)

    Article  CAS  Google Scholar 

  28. G. Yildirim, J. Alloy, Compd. 578, 526–535 (2013)

    Article  CAS  Google Scholar 

  29. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Floer, Physica C 176, 95–105 (1991)

    Article  CAS  Google Scholar 

  30. K. Takita, T. Ohshima, Physica C 757, 185–189 (1991)

    Google Scholar 

  31. S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001–045005 (2008)

    Article  Google Scholar 

  32. S. Vinu, P.M. Sarun, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 4421–4424 (2008)

    Article  CAS  Google Scholar 

  33. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, Supercond. Sci. Technol. 22, 045016–045022 (2009)

    Article  Google Scholar 

  34. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, J. Alloy, Compd. 472, 13–17 (2009)

    Article  CAS  Google Scholar 

  35. A. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy, Compd. 454, 46–51 (2008)

    Article  CAS  Google Scholar 

  36. A. Yildiz, K. Kocabas, G.B. Akyuz, J. Supercond. Nov. Magn. 25, 1459–1467 (2012)

    Article  CAS  Google Scholar 

  37. C. Terzioglu, A. Varilci, I. Belenli, J. Alloy, Compd. 478, 836–841 (2009)

    Article  CAS  Google Scholar 

  38. A. Matsumoto, H. Kumakura, H. Kitaguchi, H. Fujii, K. Togano 382, 207–212 (2002)

    CAS  Google Scholar 

  39. Q. Li, D. Shi, X.B. Zhu, L. Wang, T. Yamashita, S. Cooper, IEEE T. Appl. Supercon. 21, 160–163 (2011)

    Article  CAS  Google Scholar 

  40. M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci: Mater. El. 24, 352–361 (2013)

    Article  CAS  Google Scholar 

  41. E.H. Brandt, Rep. Prog. Phys. 58, 1465–1594 (1995)

    Article  CAS  Google Scholar 

  42. D. Dew-Hughes, Phil. Mag. 30, 293–305 (1974)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Gurcan Yildirim, dedicates this study to his father, Ismail Yildirim, on the occasion of his 59th Birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Terzioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydın, H., Babanli, A., Altintas, S.P. et al. Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature. J Mater Sci: Mater Electron 24, 4566–4573 (2013). https://doi.org/10.1007/s10854-013-1443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1443-4

Keywords

Navigation