Skip to main content
Log in

Investigation of microstructural, Vickers microhardness and superconducting properties of YBa2Cu3−xGdxO7−δ (0 ≤ x ≤ 0.150) superconducting ceramics via experimental and theoretical approaches

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study manifests the change of pinning mechanism, electrical, structural, physical, mechanical and superconducting properties of YBa2Cu3−xGdxO7−δ superconductors samples prepared by the conventional solid-state reaction method (x = 0, 0.025, 0.050, 0.100 and 0.150) by use of dc resistivity, X-ray analysis (XRD), scanning electron microscopy (SEM) and Vickers microhardness measurements. Zero resistivity transition temperatures (T offset c ) of the samples are deduced from the dc resistivity measurements. Additionally, the lattice parameters are determined from XRD measurements when the microstructure, surface morphology and microhardness of the samples studied are examined by SEM and mechanical measurements, respectively. The results obtained demonstrate that T offset c values of the samples decrease slowly with the increase in the Gd content. The maximum T offset c (92.0 K) is obtained for the pure sample prepared at 940 °C for 20 h in air atmosphere while the minimum value of 83.3 K is found for the sample doped with 0.150 Gd content. Moreover, it is obtained that J c values reduce from 132 to 34 A/cm2 with the enhancement of the Gd level in the crystalline structure. Further, the peak intensities belonging to Y123 (major) phase are obtained to decrease whereas the peak intensities of the minor phases such as BaCuO2 and Y211 are found to enhance systematically with the increment in the Gd content in the system, illustrating that partial substitution of Cu2+ ions by Gd3+ ions are carried out successfully. Moreover, SEM images display that the undoped sample obtains the best crystallinity and connectivity between superconducting grains and largest grain size whereas the worst surface morphology is observed for the maximum doped sample (x = 0.150). At the same time, Vickers microhardness, elastic modulus, load independent hardness, yield strength, fracture toughness and brittleness index values, playing important roles on the mechanical properties, are computed for all the samples. The experimental results of the microhardness measurements are examined using the Meyer’s law, PSR (proportional specimen resistance), modified PRS, Elastic–Plastic deformation model (EPD) and Hays–Kendall (HK) approach. The microhardness values obtained increase with the enhancement of the Gd content in the samples. Besides, it is noted that the Hays–Kendall approach is the most successful model explaining the mechanical properties of the samples studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.K. Wu, J.R. Ashburn, C.J. Torng, Phys. Rev. Lett. 58, 908 (1987)

    Article  CAS  Google Scholar 

  2. P. Diko, Supercond. Sci. Technol. 13, 1202 (2000)

    Article  CAS  Google Scholar 

  3. A. Koblischka-Veneva, M.R. Koblischka, K. Ogasawara, M. Murakami, Cryst. Eng. 5, 265 (2002)

    Article  CAS  Google Scholar 

  4. K. Ogasawara, N. Sakai, M. Murakami, Supercond. Sci. Technol. 13, 688 (2000)

    Article  CAS  Google Scholar 

  5. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C 423, 1190 (2005)

    Article  Google Scholar 

  6. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Res. Bull. 44, 1017 (2009)

    Article  CAS  Google Scholar 

  7. Y. Feng, L. Zhou, J.G. Wen, N. Koshizuka, A. Sulpice, J.L. Tholence, J.C. Vallier, P. Monceau, Physica C 297, 75 (1998)

    Article  CAS  Google Scholar 

  8. L. Zhou, P. Zhang, P. Ji, K. Wang, X. Wu, Supercond. Sci. Technol. 3, 390 (1990)

    Google Scholar 

  9. H. Fujimoto, M. Murakami, S. Dotoh, N. Koshizuka, S. Tanaka, Adv. Supercond. 2, 285 (1990)

    Article  Google Scholar 

  10. T. Egi, J.G. Wen, K. Koroda, H. Unoki, N. Koshizuka, Appl. Phys. Lett. 67, 2406 (1995)

    Article  CAS  Google Scholar 

  11. I. Felner, B. Brosh, Phys. Rev. B 43, 10364 (1991)

    Article  CAS  Google Scholar 

  12. C.W. Luo, Physica C 470, 176 (2009)

    Article  Google Scholar 

  13. T.D. Dzhafarov, M. Altunbas, A. Varilci, U. Cevik, A.I. Kopya, Mater. Lett. 26, 305 (1996)

    Article  CAS  Google Scholar 

  14. T.D. Dzhafarov, U. Cevik, J. Mater. Sci. Mater. Electron. 12, 193 (2001)

    Article  CAS  Google Scholar 

  15. H. Eisaki, N. Kaneko, D.L. Feng, A. Damascelli, P.K. Mang, K.M. Shen, Z.X. Shen, M. Greven, Phys. Rev. B 69, 064512 (2004)

    Article  Google Scholar 

  16. K. Fujita, T. Noda, K.M. Kojima, H. Eisaki, S. Uchida, Phys. Rev. Lett. 95, 097006 (2005)

    Article  CAS  Google Scholar 

  17. S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloy. Compd. (2012). doi:10.1016/j.jallcom.2012.06.082

    Google Scholar 

  18. K. Ozturk, S. Celik, U. Cevik, E. Yanmaz, J. Alloy. Compd. 433, 46 (2007)

    Article  Google Scholar 

  19. N.P. Liyanawaduge, S.K. Singh, A. Kumar, V.P.S. Awana, H. Kishan, J. Supercond. Nov. Magn. 24, 1599 (2011)

    Article  CAS  Google Scholar 

  20. R. Lal, S.P. Pandey, A.V. Narlikar, Phys. Rev. B 49, 6382 (1994)

    Article  CAS  Google Scholar 

  21. X.S. Wu, S.S. Jiang, C.C. Lam, D.W. Wang, X.L. Huarg, Z.H. Wu, Y. Yuan, X. Jin, Phys. Status Solidi A 157, 439 (1996)

    Article  CAS  Google Scholar 

  22. M.A. Ansari, R. Nigam, V.P.S. Awana, A. Gupta, R.B. Saxena, H. Kishan, N.P. Lalla, V. Ganesan, A.V. Narlikar, C.A. Cardoso, J. Appl. Phys. 97, 10B104 (2005)

    Article  Google Scholar 

  23. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 25, 381 (2012)

    Article  CAS  Google Scholar 

  24. A. Ianculescu, M. Gartner, B. Despax, V. Bley, T.H. Leby, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344 (1996)

    Article  Google Scholar 

  25. S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001 (2008)

    Article  Google Scholar 

  26. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, Supercond. Sci. Technol. 22, 045016 (2009)

    Article  Google Scholar 

  27. H. Wang, A. Serquis, B. Maiorov, L. Civale, Q.X. Jia, P.N. Arendt, S.R. Foltyn, J.L. Macmanus-Driscoll, X. Zhang, J. Appl. Phys. 100, 053904 (2006)

    Article  Google Scholar 

  28. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, J. Alloy. Compd. 472, 13 (2009)

    Article  CAS  Google Scholar 

  29. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, J. Alloy. Compd. 493, 11 (2010)

    Article  CAS  Google Scholar 

  30. A. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy. Compd. 454, 46 (2008)

    Article  CAS  Google Scholar 

  31. G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci. Mater. Electron 23, 928 (2012)

    Article  CAS  Google Scholar 

  32. M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu, J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0689-6

    Google Scholar 

  33. M. Dogruer, G. Yildirim, O. Ozturk, C. Terzioglu, J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1719-6

    Google Scholar 

  34. S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 847 (2012)

    Article  CAS  Google Scholar 

  35. A. Tampieri, G. Celotti, S. Lesca, G. Bezzi, T.M.G. La Torretta, G. Magnani, J. Eur. Ceram. Soc. 20, 119 (2000)

    Article  CAS  Google Scholar 

  36. A. Biju, R.P. Aloysius, U. Syamaprasad, Supercond. Sci. Technol. 18, 1454 (2005)

    Article  CAS  Google Scholar 

  37. M. Tachiki, S. Takahashi, Solid State Commun. 70, 291 (1989)

    Article  CAS  Google Scholar 

  38. M. Tachiki, S. Takahashi, Solid State Commun. 72, 1083 (1989)

    Article  CAS  Google Scholar 

  39. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575 (2010)

    Article  CAS  Google Scholar 

  40. H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307 (1988)

    Article  CAS  Google Scholar 

  41. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 1001 (2012)

    Article  CAS  Google Scholar 

  42. M. Yilmazlar, O. Ozturk, O. Gorur, I. Belenli, C. Terzioglu, Supercond. Sci. Technol. 20, 365 (2007)

    Article  CAS  Google Scholar 

  43. H. Li, R.C. Bradt, J. Mater. Sci. 22, 917 (1993)

    Article  Google Scholar 

  44. C. Hays, E.G. Kendall, Metallography 6, 275 (1973)

    Article  CAS  Google Scholar 

  45. M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0755-0

    Google Scholar 

  46. J. Gong, J. Wu, Z. Guan, J. Eur. Ceram. Soc. 19, 2625 (1999)

    Article  CAS  Google Scholar 

  47. C. Terzioglu, J. Alloy. Compd. 509, 87 (2011)

    Article  CAS  Google Scholar 

  48. R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 42, 446 (2003)

    Article  Google Scholar 

  49. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solid. 51, 357 (2003)

    Article  CAS  Google Scholar 

  50. S.M. Khalil, J. Phys. Chem. Solids 62, 457 (2001)

    Article  CAS  Google Scholar 

  51. O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 511 (2012)

    Article  CAS  Google Scholar 

  52. J.B. Quinn, V.D. Quinn, J. Mater. Sci. 32, 4331 (1997)

    Article  CAS  Google Scholar 

  53. G.P. Upit, S.A. Varchenya, Phys. Status Solidi A 17, 831 (1966)

    Article  Google Scholar 

  54. M. Ozturk, E. Erdem, O. Asikuzun, G. Yildiz, A. Yildirim, C. Varilci, J. Terzioglu, Mater. Sci Mater. Electron. (2012). doi:10.1007/s10854-012-0722-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dogruer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogruer, M., Yildirim, G., Ozturk, O. et al. Investigation of microstructural, Vickers microhardness and superconducting properties of YBa2Cu3−xGdxO7−δ (0 ≤ x ≤ 0.150) superconducting ceramics via experimental and theoretical approaches. J Mater Sci: Mater Electron 24, 1264–1273 (2013). https://doi.org/10.1007/s10854-012-0917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0917-0

Keywords

Navigation