Skip to main content
Log in

A review of the potential application of lignin in the production of bio-binder: challenges and opportunities

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim is to treat nature in such a way that usage of natural resources has little to zero hazards to our environment. There is a need to protect the earth and its ecology from approaching disasters brought on by anthropogenic activity, particularly the combustion of fossil fuels for energy. The net-zero emission shall be achieved worldwide by embracing sustainable bio-energy resources. Under this domain, the invention of bio-ethanol also known as 2G-ethanol from crop residue (lignocellulosic biomass) took place and is contributing toward rural development and energy independence. Similarly, researchers have modified the conventional petroleum-based bitumen by incorporating various types of lignin, including wood lignin, kraft lignin, soda lignin, lignosulfonates, and lignin-derived from biofuel production. This review encompasses the growth in biofuel production and advantages stemming from bitumen modified using lignin obtained as a byproduct from bio-fuel industries. The study also explores potential approaches for producing a direct alternative bio-binder using lignin. However, there remains a necessity for dedicated research and development to optimize the production methods of bio-binders. Using bio-bitumen or bio-binder in constructing bituminous layers shall contribute to reducing the dependency on fossil fuels, lowering the carbon footprint, improving the performance, and valorizing the biowaste. This review comprehensively outlines the challenges in the production of bio-binder from lignin. Also, this shall serve as a starting point for further research projects by highlighting the potential of lignin as a source for developing a direct alternative bio-binder in pavement engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. Hamilton I, Rapf O, Kockat DJ et al (2020) 2020 global status report for buildings and construction. United Nations Environ Program, Nairobi

    Google Scholar 

  2. Zhang WJ (2008) A forecast analysis on world population and urbanization process. Environ Dev Sustain 10:717–730. https://doi.org/10.1007/s10668-007-9081-8

    Article  Google Scholar 

  3. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bongaarts J (2019) IPBES 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Wiley, Hoboken, NJ

    Book  Google Scholar 

  5. Gielen D, Boshell F, Saygin D et al (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50

    Article  Google Scholar 

  6. Barana D, Salanti A, Orlandi M et al (2016) Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind Crops Prod 86:31–39. https://doi.org/10.1016/j.indcrop.2016.03.029

    Article  CAS  Google Scholar 

  7. Guarin A, Khan A, Butt AA et al (2016) An extensive laboratory investigation of the use of bio-oil modified bitumen in road construction. Constr Build Mater 106:133–139. https://doi.org/10.1016/j.conbuildmat.2015.12.009

    Article  CAS  Google Scholar 

  8. Flávia Justino Uchoa A, da Silva RW, Peter Macedo Feitosa J et al (2021) Bio-based palm oil as an additive for asphalt binder: chemical characterization and rheological properties. Constr Build Mater 285:122883. https://doi.org/10.1016/j.conbuildmat.2021.122883

    Article  CAS  Google Scholar 

  9. Yang X, You Z, Dai Q, Mills-Beale J (2014) Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Constr Build Mater 51:424–431. https://doi.org/10.1016/j.conbuildmat.2013.11.017

    Article  Google Scholar 

  10. Gong M, Yang J, Zhang J et al (2016) Physical-chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr Build Mater 105:35–45. https://doi.org/10.1016/j.conbuildmat.2015.12.025

    Article  CAS  Google Scholar 

  11. Yang X, Mills-Beale J, You Z (2017) Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. J Clean Prod 142:1837–1847. https://doi.org/10.1016/j.jclepro.2016.11.100

    Article  CAS  Google Scholar 

  12. Ma F, Dai J, Fu Z et al (2022) Biochar for asphalt modification: a case of high-temperature properties improvement. Sci Total Environ 804:150194. https://doi.org/10.1016/j.scitotenv.2021.150194

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kumar A, Choudhary R, Narzari R et al (2018) Evaluation of bio-asphalt binders modified with biochar: a pyrolysis by-product of Mesua ferrea seed cover waste. Cogent Eng 5:1–15. https://doi.org/10.1080/23311916.2018.1548534

    Article  Google Scholar 

  14. Zhang Y, Wang X, Ji G et al (2020) Mechanical performance characterization of lignin-modified asphalt mixture. Appl Sci 10:3324. https://doi.org/10.3390/app10093324

    Article  CAS  Google Scholar 

  15. Pérez IP, Rodríguez Pasandín AM, Pais JC, Alves Pereira PA (2019) Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. J Clean Prod 220:87–98. https://doi.org/10.1016/j.jclepro.2019.02.082

    Article  CAS  Google Scholar 

  16. Gaudenzi E, Canestrari F, Lu X, Cardone F (2021) Performance assessment of asphalt mixture produced with a bio-based binder. Materials (Basel) 14:918

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  18. Huang Y, Wang L, Chao Y et al (2016) Relationships between hemicellulose composition and lignin structure in woods. J Wood Chem Technol 36:9–15. https://doi.org/10.1080/02773813.2015.1039543

    Article  CAS  Google Scholar 

  19. McCarthy JL, Islam A (1999) Lignin chemistry, technology, and utilization: a brief history. ACS Publications, Washington, D.C.

    Google Scholar 

  20. Wang Y, Meng X, Pu Y, Ragauskas AJ (2020) Recent advances in the application of functionalized lignin in value-added polymeric materials. Polymers (Basel) 12:2277

    Article  CAS  PubMed  Google Scholar 

  21. Kumar A, Choudhary R, Kataki R, Kumar A (2020) Bioasphalt binders: introducing sustainability in a non-renewable road construction material. Civil Eng Constr Rev 34(4):34–42

    Google Scholar 

  22. Market Analysis R (2023) Lignin market size, share & trends analysis report by product (Lingo-sulfonates, Kraft Lignin, Organosolv Lignin, Others), by application, by region, and segment forecasts, 2023–2030

  23. Wu J, Liu Q, Wang C et al (2021) Investigation of lignin as an alternative extender of bitumen for asphalt pavements. J Clean Prod 283:124663. https://doi.org/10.1016/j.jclepro.2020.124663

    Article  CAS  Google Scholar 

  24. Gao J, Wang H, Liu C et al (2020) High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder. Constr Build Mater 230:117063. https://doi.org/10.1016/j.conbuildmat.2019.117063

    Article  CAS  Google Scholar 

  25. Xu C, Wang D, Zhang S et al (2021) Effect of lignin modifier on engineering performance of bituminous binder and mixture. Polymers 13(7):1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adwani D, Sreeram A, Pipintakos G et al (2023) Interpreting the effectiveness of antioxidants to increase the resilience of asphalt binders : a global interlaboratory study. Constr Build Mater 366:130231. https://doi.org/10.1016/j.conbuildmat.2022.130231

    Article  CAS  Google Scholar 

  27. Gohari AR, Lamothe S, Bilodeau J et al (2023) Laboratory study on influence of blending conditions on chemo-thermal characteristics of lignin-modified bitumen. Appl Sci 13:7766

    Article  CAS  Google Scholar 

  28. Zhang Y, Liu X, Apostolidis P et al (2019) Chemical and rheological evaluation of aged lignin-modified bitumen. Materials (Basel) 12(24):4176

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Zhang R, Sun S, Wang L et al (2021) Lignin structure defines the properties of asphalt binder as a modifier. Constr Build Mater 310:125156. https://doi.org/10.1016/j.conbuildmat.2021.125156

    Article  CAS  Google Scholar 

  30. Fatemi S, Bazaz JB, Ziaee SA (2021) The pros and cons of using calcium lignosulfonate as a recycled anti-aging additive on engineering properties of bituminous mastics. Case Stud Constr Mater 15:e00739. https://doi.org/10.1016/j.cscm.2021.e00739

    Article  Google Scholar 

  31. Yilmaz B, Ugurlu N (2023) The effect of waste material generated during paper production on the rheological and structural features of asphalt binder. Road Mater Pavement Des. https://doi.org/10.1080/14680629.2023.2188098

    Article  Google Scholar 

  32. Ren S, Liu X, Zhang Y et al (2021) Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods. Constr Build Mater 287:123058. https://doi.org/10.1016/j.conbuildmat.2021.123058

    Article  Google Scholar 

  33. Sun L, Gu X, Hu D et al (2023) Anti-aging mechanism and rheological properties of lignin, quercetin, and gallic acid as antioxidants in asphalt. Constr Build Mater 369:130560. https://doi.org/10.1016/j.conbuildmat.2023.130560

    Article  CAS  Google Scholar 

  34. Wang H, Derewecki K (2013) Rheological properties of asphalt binder partially substituted with wood lignin. Airfield and highway pavement 2013: sustainable and efficient pavements. American Society of Civil Engineers, Reston, pp 977–986

    Chapter  Google Scholar 

  35. Xu G, Wang H, Zhu H (2017) Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr Build Mater 151:801–808. https://doi.org/10.1016/j.conbuildmat.2017.06.151

    Article  CAS  Google Scholar 

  36. Maria A, Duarte G, De MO et al (2022) Characterisation of modified asphalt mixtures with lignin of pinus and eucalyptus woods. Aust J Civ Eng 00:1–12. https://doi.org/10.1080/14488353.2022.2089376

    Article  CAS  Google Scholar 

  37. Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16:832. https://doi.org/10.3390/ijerph16050832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

    Article  CAS  Google Scholar 

  39. Sönnichsen N (2021) Ethanol fuel production in top countries 2020. Energy Environ

  40. Rowe G, King G (2014) Journal of the influence of binder rheology in the cracking of asphalt mixes in airport and highway projects. J Test Eval 42:1063. https://doi.org/10.1520/JTE20130245

    Article  Google Scholar 

  41. Terrel RL, Rimsritong S (1979) Wood Lignins used as extenders for asphalt in bituminous pavements (with Discussion). In: Association of asphalt paving technologists proceedings

  42. Fakhri M, Norouzi MA (2022) Rheological and ageing properties of asphalt bio-binders containing lignin and waste engine oil. Constr Build Mater 321:126364. https://doi.org/10.1016/j.conbuildmat.2022.126364

    Article  CAS  Google Scholar 

  43. Yu J, Vaidya M, Su G et al (2021) Experimental study of soda lignin powder as an asphalt modifier for a sustainable pavement material. Constr Build Mater 298:123884. https://doi.org/10.1016/j.conbuildmat.2021.123884

    Article  CAS  Google Scholar 

  44. Zhang Y, Liu X, Ren S et al (2022) Effect of bio-oil on rheology and chemistry of organosolv lignin–modified bitumen. J Mater Civ Eng 34:1–16. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004140

    Article  Google Scholar 

  45. Norgbey E, Huang J, Hirsch V et al (2020) Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads. Constr Build Mater 230:116957. https://doi.org/10.1016/j.conbuildmat.2019.116957

    Article  CAS  Google Scholar 

  46. Nahar S, Slaghek TM, van Vliet D et al (2022) Mutual compatibility aspects and rheological assessment of (modified) lignin–bitumen blends as potential binders for asphalt. Road Mater. Pavement Des. 24(10):2379–2392. https://doi.org/10.1080/14680629.2022.2146602

    Article  CAS  Google Scholar 

  47. Azadfar M, Gao AH, Chen S (2015) Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol. Int J Biol Macromol 75:58–66. https://doi.org/10.1016/j.ijbiomac.2014.12.049

    Article  CAS  PubMed  Google Scholar 

  48. Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crops Prod 20:205–218. https://doi.org/10.1016/j.indcrop.2004.04.022

    Article  CAS  Google Scholar 

  49. Batista KB, Padilha RPL, Castro TO et al (2018) High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind Crops Prod 111:107–116. https://doi.org/10.1016/j.indcrop.2017.10.010

    Article  CAS  Google Scholar 

  50. Hobson C (2017) Evaluation of lignin as an antioxidant in asphalt binders and bituminous mixtures. Kansas Department of Transportation, Topeka, KS

    Google Scholar 

  51. McCready NS, Williams RC (2008) Utilization of biofuel coproducts as performance enhancers in asphalt binder. Transp Res Rec 2051:8–14. https://doi.org/10.3141/2051-02

    Article  CAS  Google Scholar 

  52. Herrington PR (1995) Thermal decomposition of asphalt sulfoxides. Fuel 74:1232–1235

    Article  CAS  Google Scholar 

  53. Zhang Y, Liu X, Apostolidis P et al (2020) Evaluation of organosolv lignin as an oxidation inhibitor in bitumen. MDPI 25:1–13

    Google Scholar 

  54. Pérez I, Pasandín AR, Pais JC, Pereira PAA (2020) Feasibility of using a lignin-containing waste in asphalt binders. Waste Biomass Valoriz 11:3021–3034. https://doi.org/10.1007/s12649-019-00590-4

    Article  CAS  Google Scholar 

  55. Li DD, Greenfield ML (2014) Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 115:347–356. https://doi.org/10.1016/j.fuel.2013.07.012

    Article  CAS  Google Scholar 

  56. Khabaz F, Khare R (2018) Molecular simulations of asphalt rheology: application of time–temperature superposition principle superposition principle. J Rheol 62:941. https://doi.org/10.1122/1.4996919

    Article  ADS  CAS  Google Scholar 

  57. You L, Spyriouni T, Dai Q et al (2020) Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt. Constr Build Mater 265:120358. https://doi.org/10.1016/j.conbuildmat.2020.120358

    Article  CAS  Google Scholar 

  58. De FB, Chanton JP, Barlaz MA (2013) Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples. Waste Manag 33:2001–2005. https://doi.org/10.1016/j.wasman.2012.12.012

    Article  CAS  Google Scholar 

  59. Usman M, Kiaer B (2019) Biomass and Bioenergy Lignin degradation under anaerobic digestion: influence of lignin modifications-a review. Biomass Bioenergy 128:105325. https://doi.org/10.1016/j.biombioe.2019.105325

    Article  CAS  Google Scholar 

  60. Moretti C, Corona B, Hoefnagels R et al (2022) Kraft lignin as a bio-based ingredient for Dutch asphalts: an attributional LCA. Sci Total Environ 806:150316. https://doi.org/10.1016/j.scitotenv.2021.150316

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Hu Y, Si W, Kang X et al (2022) State of the art: multiscale evaluation of bitumen ageing behaviour. Fuel 326:125045. https://doi.org/10.1016/j.fuel.2022.125045

    Article  CAS  Google Scholar 

  62. Sarkanen KV, Ludwig CH (1971) Lignins: Occurrence, formation structure and reactions. Wiley, New York, pp 228–230

    Google Scholar 

  63. Dessbesell L, Yuan Z, Leitch M et al (2018) Capacity design of a kraft lignin biore fi nery for production of biophenol via a proprietary low-temperature/low-pressure lignin depolymerization process. ACS Sustain Chem Eng 6(7):9293–9303. https://doi.org/10.1021/acssuschemeng.8b01582

    Article  CAS  Google Scholar 

  64. Bayer O (1947) Das Di-lsocganat-poluadditionsverfahren (Polyurethane). Angew Chem 59:257–288

    Article  ADS  Google Scholar 

  65. Trejo-Cáceres M, Sánchez MC, Martín-Alfonso JE (2023) Impact of acetylation process of Kraft lignin in development of environment-friendly semisolid lubricants. Int J Biol Macromol 227:673–684

    Article  PubMed  Google Scholar 

  66. Wang C, Kelley SS, Venditti RA (2016) Lignin-based thermoplastic materials. ChemSusChem 9:770–783. https://doi.org/10.1002/cssc.201501531

    Article  CAS  PubMed  Google Scholar 

  67. Ren Y, Cao H, Xu H et al (2020) Improved aging properties of bio-bitumen coating sheets by using modified lignin. J Environ Manag 274:111178. https://doi.org/10.1016/j.jenvman.2020.111178

    Article  CAS  Google Scholar 

  68. Zhang X, Kim Y, Elsayed I et al (2019) Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Ind Crops Prod 141:111797. https://doi.org/10.1016/j.indcrop.2019.111797

    Article  CAS  Google Scholar 

  69. Li Y, Lv C, Cheng P et al (2023) Application of bio-resin in road materials: Rheological and chemical properties of asphalt binder modified by lignin-phenolic resin. Case Stud Constr Mater 18:e01989. https://doi.org/10.1016/j.cscm.2023.e01989

    Article  Google Scholar 

  70. Raouf MA, Williams RC (2010) Temperature and shear susceptibility of a nonpetroleum binder as a pavement material. Transp Res Rec 2180:9–18. https://doi.org/10.3141/2180-02

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the facilities provided by the Department of Civil Engineering of the National Institute of Technology Karnataka, Surathkal, India.

Author information

Authors and Affiliations

Authors

Contributions

YRG contributed to conceptualization, data curation, methodology, and writing—original draft. DHK contributed to investigation, formal analysis, resources, and writing—review. RKC, RHM, and AUR contributed to writing—review and editing.

Corresponding author

Correspondence to Yatish R G.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R G, Y., Kumar, D.H., Chinnabhandar, R.K. et al. A review of the potential application of lignin in the production of bio-binder: challenges and opportunities. J Mater Sci 59, 3205–3224 (2024). https://doi.org/10.1007/s10853-024-09429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09429-3

Navigation