Skip to main content
Log in

Elimination of dyes by catalytic reduction in the absence of light: A review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing novel technologies for the effectual treatment of wastewater comprising contaminated organic pollutants is of extraordinary importance across the globe. In the last few years, removal of organic pollutants using various nanocatalysts from aqueous solution by chemical reduction in the presence of NaBH4, as a reducing agent, has become an established route. Nanomaterials show great potential for the improvement of water treatment technologies. Recently, catalytic reduction of dyes by using various nanoparticles has received significant attention due to their effectiveness in degradation and producing less toxic and environmentally benign products. Herein, this comprehensive review discusses the classification of nanocatalysts, mechanisms involved in catalytic degradation of various types of dyes, recyclability of nanocatalysts and characterization techniques for various nanocomposites. We aim to review and summarize the recently published literature and R&D progress in catalytic reduction of various water pollutants. Different nanocatalytic assemblies used for reduction of dyes and their division based on nature of nanoparticles and composition of supporting materials have been described critically. A mechanism for chemical reduction of nitrophenols, methylene blue, Congo red, and methyl orange in the presence of nanocatalysts has been elaborated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

reproduced with permission from Naseem et al.[191]

Figure 2

reproduced with permission from Bharath G. et al. [196]

Figure 3

reproduced with permission from Abay, A.K., et al. [207]

Figure 4

reproduced with permission from Abay, A.K., et al. [208]

Figure 5

reproduced with permission from Chandra et al. [234]

Figure 6

reproduced with permission from Chandra et al. [234]

Figure 7

reproduced with permission from Saad A. et al. [239]

Figure 8

reproduced with permission from Rajesh et al., [268] and b proposed mechanism for the reduction of CR; reproduced with permission from. Jia et. al. [202]

Figure 9

reproduced with permission from Ai, L. et al. [258]

Figure 10

reproduced with permission from Xuan S., et al. [262]

Figure 11

reproduced with permission from Du S., et al. [272]

Figure 12

reproduced with permission from Ansari et al. [304]

Figure 13

reproduced with permission from Azzam et al. [305]

Figure 14

reproduced with permission from Das et al. [306]

Figure 15

reproduced with permission from Ding et al. [307]

Figure 16

reproduced with permission from Elda R., et al. [314]

Figure 17

reproduced with permission from Esrafili et al. [319]

Figure 18

reproduced with permission from Zeng et al.[322]

Similar content being viewed by others

References

  1. Chiou J-R et al (2013) One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater 248–249:394–400

    Article  CAS  Google Scholar 

  2. Pabbathi NPP et al (2020) Environmental metabolomics: with the perspective of marine toxicology assessment, in environmental biotechnology. Springer, Newyork

    Google Scholar 

  3. Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment 1.

  4. Jiang J-Q, Ashekuzzaman SM (2012) Development of novel inorganic adsorbent for water treatment. Curr Opin Chem Eng 1(2):191–199

    Article  CAS  Google Scholar 

  5. Margalef-Marti R et al (2019) Evaluating the potential use of a dairy industry residue to induce denitrification in polluted water bodies: A flow-through experiment. J Environ Manage 245:86–94

    Article  CAS  Google Scholar 

  6. Elimelech M (2006) The global challenge for adequate and safe water. J Water Supply Res Technol–AQUA, 55(1): 3–10.

  7. Tabassum S (2019) A combined treatment method of novel mass bio system and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies. Chem Eng J 378:122217

    Article  CAS  Google Scholar 

  8. Fawell J, Nieuwenhuijsen MJ (2003) Contaminants in drinking water environmental pollution and health. Br Med Bull 68(1):199–208

    Article  CAS  Google Scholar 

  9. Kass A et al (2005) The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer. J Hydrol 300(1–4):314–331

    Article  CAS  Google Scholar 

  10. Al Yaqout AF (2003) Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate. Waste Manage 23(9):817–824

    Article  CAS  Google Scholar 

  11. Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater–a short review. Adv Coll Interface Sci 152(1):26–38

    Article  CAS  Google Scholar 

  12. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment–A review. Chem Eng J 157(2):277–296

    Article  CAS  Google Scholar 

  13. Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504

    Article  CAS  Google Scholar 

  14. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  15. Raza A et al (2019) Enhanced industrial dye degradation using Co doped in chemically exfoliated MoS2 nanosheets. Appl Nanosci 10(5):1535–1544

    Article  CAS  Google Scholar 

  16. Ikram M et al (2020) Photocatalytic and bactericidal properties and molecular docking analysis of TiO2 nanoparticles conjugated with Zr for environmental remediation. RSC Adv 10(50):30007–30024

    Article  CAS  Google Scholar 

  17. Zollinger H (2000) Azo dyes and pigments. Colour Chem-Syn, Properties Appl Organic Dyes Pigments 1987:92–100

    Google Scholar 

  18. Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19:350–371

    Article  CAS  Google Scholar 

  19. Mark HF et al (1978) Encyclopedia of chemical technology. Wiley, London

    Google Scholar 

  20. Ikram M et al (2020) Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO2 nanoparticles. RSC Adv 10(41):24215–24233

    Article  CAS  Google Scholar 

  21. Rafiq A, et al. (2021) Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem.

  22. Naz M et al (2018) Bio-inspired synthesis of silver nanoparticles: anticancer drug carrier, catalytic and bactericidal potential. Nanosci Nanotechnol Lett 10(7):889–899

    Article  Google Scholar 

  23. Vanhulle S et al (2008) Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environ Sci Technol 42(2):584–589

    Article  CAS  Google Scholar 

  24. Pereira L, Alves M (2012) Dyes—environmental impact and remediation, in Environmental protection strategies for sustainable development. Springer, Newyork

    Google Scholar 

  25. Ikram M et al (2020) Outstanding performance of silver-decorated MoS2 nanopetals used as nanocatalyst for synthetic dye degradation. Phys E Low-dimensional Syst Nanostruct 124:114246

    Article  CAS  Google Scholar 

  26. Ikram M et al (2020) Promising performance of chemically exfoliated Zr-doped MoS2 nanosheets for catalytic and antibacterial applications. RSC Adv 10(35):20559–20571

    Article  CAS  Google Scholar 

  27. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B 87(3–4):105–145

    Article  CAS  Google Scholar 

  28. Taghizadeh A, Rad-Moghadam K (2018) Green fabrication of Cu/pistachio shell nanocomposite using Pistacia Vera L. hull: An efficient catalyst for expedient reduction of 4-nitrophenol and organic dyes. J Cleaner Prod 198:1105–1119

    Article  CAS  Google Scholar 

  29. Ikram M et al (2020) 2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: synthesis, properties and catalytic application for the treatment of industrial wastewater. Appl Nanosci 10(9):3525–3528

    Article  CAS  Google Scholar 

  30. Raza A et al (2020) A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior. Appl Nanosci 10(10):3875–3899

    Article  CAS  Google Scholar 

  31. Zhang Z et al (2015) A highly reactive and magnetic recyclable catalytic system based on AuPt nanoalloys supported on ellipsoidal Fe@ SiO 2. J Mater Chem A 3(8):4642–4651

    Article  CAS  Google Scholar 

  32. Ikram M et al (2020) Reduced graphene oxide nanosheets doped by Cu with highly efficient visible light photocatalytic behavior. J Alloys Comp 837:155588

    Article  CAS  Google Scholar 

  33. Padhi B (2012) Pollution due to synthetic dyes toxicity carcinogenicity studies and remediation. Int J Environ Sci 3(3):940–955

    Google Scholar 

  34. Ajmal A et al (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026

    Article  CAS  Google Scholar 

  35. Ikram M et al (2020) Hydrothermal Synthesis of Silver Decorated Reduced Graphene Oxide (rGO) Nanoflakes with Effective Photocatalytic Activity for Wastewater Treatment. Nanoscale Res Lett 15(1):95

    Article  CAS  Google Scholar 

  36. Srivastava V, Choubey AK (2019) Synthesis of nanostructured silver particles using Citrus limetta peel extract for catalytic degradation of azo dyes through electron relay effect. Adv Nat Sci Nanosci Nanotechnol 10(4):045015

    Article  Google Scholar 

  37. Kaur G et al (2020) Blooming approach: one-pot biogenic synthesis of TiO2 nanoparticles using piper betle for the degradation of industrial reactive yellow 86 Dye. J Inorganic Organometall Polymers Mater 31(3):1111–1119

    Article  CAS  Google Scholar 

  38. Mallakpour S, Behranvand V, Mallakpour F (2019) Synthesis of alginate/carbon nanotube/carbon dot/fluoroapatite/TiO2 beads for dye photocatalytic degradation under ultraviolet light. Carbohyd Polym 224:115138

    Article  CAS  Google Scholar 

  39. Naz M et al (2017) Green synthesis (A. indica seed extract) of silver nanoparticles (Ag-NPs), characterization, their catalytic and bactericidal action potential. Nanosci and Nanotechnol Lett 9(11):1649–1655

    Article  Google Scholar 

  40. Xiong P et al (2012) Multi-walled carbon nanotubes supported nickel ferrite: a magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. Chem Eng J 195–196:149–157

    Article  CAS  Google Scholar 

  41. Rafiq A et al (2019) ZnS–Ni doped nanoparticles served as promising nano-photocatalyst (industrial dye degrader). Nanosci Nanotechnol Lett 11(8):1060–1069

    Article  Google Scholar 

  42. Maurino V et al (1997) The fate of organic nitrogen under photocatalytic conditions: degradation of nitrophenols and aminophenols on irradiated TiO2. J Photochem Photobiol, A 109(2):171–176

    Article  CAS  Google Scholar 

  43. Singh J, A.J.E.t. Dhaliwal, (2020) Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst. Environmen Technol 41(12):1520–1534

    CAS  Google Scholar 

  44. Soler L, Sánchez S (2014) Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 6(13):7175–7182

    Article  CAS  Google Scholar 

  45. Parasuraman D, Serpe MJ (2011) Poly (N-isopropylacrylamide) microgels for organic dye removal from water. ACS Appl Mater Interfaces 3(7):2732–2737

    Article  CAS  Google Scholar 

  46. Ahmad M et al (2014) Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrason Sonochem 21(2):761–773

    Article  CAS  Google Scholar 

  47. Zhou L et al (2016) The roles of conjugations of graphene and Ag in Ag 3 PO 4-based photocatalysts for degradation of sulfamethoxazole. Catal Sci Technol 6(15):5972–5981

    Article  CAS  Google Scholar 

  48. Khehra MS et al (2005) Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res 39(20):5135–5141

    Article  CAS  Google Scholar 

  49. Xiao F et al (2016) Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. J Hazard Mater 308:11–20

    Article  CAS  Google Scholar 

  50. Yu F et al (2014) A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ Sci Technol Lett 1(7):320–324

    Article  CAS  Google Scholar 

  51. Donaldson JD et al (2002) Anodic oxidation of the dye materials methylene blue, acid blue 25, reactive blue 2 and reactive blue 15 and the characterisation of novel intermediate compounds in the anodic oxidation of methylene blue. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 77(7):756–760

    CAS  Google Scholar 

  52. Apolinário ÂC et al (2008) Wet air oxidation of nitro-aromatic compounds: Reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl Catal B 84(1):75–86

    Article  CAS  Google Scholar 

  53. Li Y et al (2020) Preparation of CoFe2O4–P4VP@Ag NPs as effective and recyclable catalysts for the degradation of organic pollutants with NaBH4 in water. Int J Hydrogen Energy 45(32):16080–16093

    Article  CAS  Google Scholar 

  54. Narayanan RK, Devaki SJ (2015) Brawny silver-hydrogel based nanocatalyst for reduction of nitrophenols: studies on kinetics and mechanism. Ind Eng Chem Res 54(4):1197–1203

    Article  CAS  Google Scholar 

  55. Zhu X, Ni J (2011) The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron. Electrochim Acta 56(28):10371–10377

    Article  CAS  Google Scholar 

  56. Singh S, Kumar N, Kumar M, Jyoti Agarwal A, Mizaikoff B (2017) Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem Eng J 4:283–292

    Article  CAS  Google Scholar 

  57. Zaggout FR, Abu Ghalwa N (2008) Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode. J Environ Manag 86(1):291–296

    Article  CAS  Google Scholar 

  58. Wu Z et al (2012) Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol. Catal Commun 18:55–59

    Article  CAS  Google Scholar 

  59. Chen R, et al (2007) Effect of alumina particle size on Ni/Al2O3 Catalysts for p-nitrophenol hydrogenation* *Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province(No.BK2006722). Chinese J Chem Eng, 15(6): p. 884–888.

  60. Dai R et al (2009) Reduction of nitro phenols using nitroreductase from E coli in the presence of NADH. J Hazardous Mater 170(1):141–143

    Article  CAS  Google Scholar 

  61. Li L et al (2013) Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment. J Hazard Mater 262:48–54

    Article  CAS  Google Scholar 

  62. Rodríguez-León E et al (2019) Synthesis of gold nanoparticles using mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Res Lett 14(1): 334

  63. Zhang A et al (2012) Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. J Hazard Mater 201:68–73

    Article  CAS  Google Scholar 

  64. Ganzenko O et al (2018) Bioelectro-Fenton: evaluation of a combined biological—advanced oxidation treatment for pharmaceutical wastewater. Environ Sci Pollut Res 25(21):20283–20292

    Article  CAS  Google Scholar 

  65. Madrakian T, Afkhami A, Ahmadi MJC (2013) Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples. Chemosphere 90(2):542–547

    Article  CAS  Google Scholar 

  66. Luo Y et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Article  CAS  Google Scholar 

  67. da Silva MER, PIM. Firmino ABJBt. (2012) dos Santos, Impact of the redox mediator sodium anthraquinone-2, 6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one-and two-stage anaerobic systems. Bioresource technology. 121: 1–7.

  68. Lichtfouse CG, EJECL, (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    Article  CAS  Google Scholar 

  69. Robinson T et al (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77(3):247–255

    Article  CAS  Google Scholar 

  70. Gupta N, Singh HP, Sharma RK (2011) Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Mol Catal A: Chem 335(1–2):248–252

    Article  CAS  Google Scholar 

  71. Safavi A, Momeni S (2012) Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. J Hazard Mater 201:125–131

    Article  CAS  Google Scholar 

  72. Amir M, Kurtan U, Baykal A (2015) Rapid color degradation of organic dyes by Fe3O4@ His@ Ag recyclable magnetic nanocatalyst. J Ind Eng Chem 27:347–353

    Article  CAS  Google Scholar 

  73. Zheng L-Q et al (2015) Reversible catalysis for the reaction between methyl orange and NaBH 4 by silver nanoparticles. Chem Commun 51(6):1050–1053

    Article  CAS  Google Scholar 

  74. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016) Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci 470:268–275

    Article  CAS  Google Scholar 

  75. Bian S-W, Liu S, Chang L (2016) Synthesis of magnetically recyclable Fe 3 O 4@ polydopamine–Pt composites and their application in hydrogenation reactions. J Mater Sci 51(7):3643–3649. https://doi.org/10.1007/s10853-015-9688-3

    Article  CAS  Google Scholar 

  76. Francis S et al (2019) Catalytic activities of green synthesized silver and gold nanoparticles. Mater Today Proc 9:97–104

    Article  CAS  Google Scholar 

  77. Zhong X et al (2020) The magnetic covalent organic framework as a platform for high-performance extraction of Cr (VI) and bisphenol a from aqueous solution. J Hazardous Mater 393:122353

    Article  CAS  Google Scholar 

  78. Zhu Y et al (2020) Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater. Chemosphere 246:125753

    Article  CAS  Google Scholar 

  79. Zelekew OA, Kuo D-H (2016) A two-oxide nanodiode system made of double-layered p-type Ag 2 O@ n-type TiO 2 for rapid reduction of 4-nitrophenol. Phys Chem Chem Phys 18(6):4405–4414

    Article  CAS  Google Scholar 

  80. Ikram M et al (2020) Bimetallic Ag/Cu incorporated into chemically exfoliated MoS2 nanosheets to enhance its antibacterial potential: in silico molecular docking studies. Nanotechnology 31(27):275704

    Article  CAS  Google Scholar 

  81. Quiton KGN, Lu M-C, Huang Y-H (2021) Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: a review. Chemosphere 262:128371

    Article  CAS  Google Scholar 

  82. Albukhari SM et al (2019) Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf, A 577:548–561

    Article  CAS  Google Scholar 

  83. Nagarajan D, Venkatanarasimhan S (2019) Copper(II) oxide nanoparticles coated cellulose sponge—an effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ Sci Pollut Res 26(22):22958–22970

    Article  CAS  Google Scholar 

  84. Kılıç Depren S et al (2020) Ultra-layered sheet CuCo nanoparticles for optimized application in catalytic reduction of organic dye. Mater Characterization 160:110116

    Article  CAS  Google Scholar 

  85. Zhang P et al (2014) A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@ C core–shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS Appl Mater Interfaces 6(4):2671–2678

    Article  CAS  Google Scholar 

  86. Roberts EJ et al (2019) Continuous flow methods of fabricating catalytically active metal nanoparticles. ACS Appl Mater Interfaces 11(31):27479–27502

    Article  CAS  Google Scholar 

  87. Zhang N et al (2020) Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts. Chem Eng J 380:122516

    Article  CAS  Google Scholar 

  88. Oseghale CI et al (2019) Gold-based carbon-supported bimetallic catalysts for energy storage and biomedical applications. Microchem J 149:103917

    Article  CAS  Google Scholar 

  89. Wang P et al (2020) Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technol 233:115960

    Article  CAS  Google Scholar 

  90. Soltani M, Zabihi M (2020) Hydrogen generation by catalytic hydrolysis of sodium borohydride using the nano-bimetallic catalysts supported on the core-shell magnetic nanocomposite of activated carbon. Int J Hydrogen Energy 45(22):12331–12346

    Article  CAS  Google Scholar 

  91. Pozun ZD et al (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. The J Phys Chem C 117(15):7598–7604

    Article  CAS  Google Scholar 

  92. Hasnat MA et al (2015) Aggregated Pt–Pd nanoparticles on Nafion membrane for impulsive decomposition of hydrogen peroxide. RSC Adv 5(57):46295–46300

    Article  CAS  Google Scholar 

  93. Wang Y-X et al (2020) Ligand-enabled Ni–Al bimetallic catalysis for nonchelated dual C-H annulation of arylformamides and alkynes. Org Lett 22(6):2230–2234

    Article  CAS  Google Scholar 

  94. Gu Y et al (2019) Solvent effect on the solvothermal synthesis of mesoporous NiO catalysts for activation of peroxymonosulfate to degrade organic dyes. ACS Omega 4(18):17672–17683

    Article  CAS  Google Scholar 

  95. Lee J-SM et al (2019) Homogenized bimetallic catalysts from metal-organic framework alloys. Chem Mater 31(11):4205–4212

    Article  CAS  Google Scholar 

  96. Mei S et al (2020) Organic–inorganic bimetallic hybrid particles with controllable morphology for the catalytic degradation of organic dyes. J Hazard Mater 44(20):8366–8378

    CAS  Google Scholar 

  97. Park H et al (2017) Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation. Appl Surf Sci 401:314–322

    Article  CAS  Google Scholar 

  98. Ma, B., et al. (2019) Bimetal–organic-framework-derived nanohybrids Cu0.9Co2.1S4@MoS2 for high-performance visible-light-catalytic hydrogen evolution reaction. ACS Appl Energy Mater, 2(2): 1134–1148.

  99. Zhang K et al (2020) Insights into the active sites of chlorine-resistant Pt-based bimetallic catalysts for benzene oxidation. Appl Catalysis B Environ 279:119372

    Article  CAS  Google Scholar 

  100. Rui N et al (2021) Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Appl Catalysis B Environ 282:119581

    Article  CAS  Google Scholar 

  101. Jiang Z, Guo S, Fang T (2019) Enhancing the Catalytic Activity and Selectivity of PdAu/SiO2 Bimetallic Catalysts for Dodecahydro-N-ethylcarbazole Dehydrogenation by Controlling the Particle Size and Dispersion. ACS Appl Energy Mater 2(10):7233–7243

    Article  CAS  Google Scholar 

  102. Pan Y-T, Yang H (2020) Design of bimetallic catalysts and electrocatalysts through the control of reactive environments. Nano Today 31:100832

    Article  CAS  Google Scholar 

  103. Peng W et al (2011) Selective reduction of 4, 4′-dinitrostilbene-2, 2′-disulfonic acid catalyzed by supported nano-sized gold with sodium formate as hydrogen source. Catal Commun 12(6):568–572

    Article  CAS  Google Scholar 

  104. Hatamifard A, Nasrollahzadeh M, Lipkowski JJRa (2015) Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv 5(111):91372–91381

    Article  CAS  Google Scholar 

  105. Khan MM, Lee J, Cho MH (2014) Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20(4):1584–1590

    Article  CAS  Google Scholar 

  106. Kumar Y et al (2020) Nitrogen-rich and porous graphitic carbon nitride nanosheet-immobilized palladium nanoparticles as highly active and recyclable catalysts for the reduction of nitro compounds and degradation of organic dyes. ACS Omega 5(22):13250–13258

    Article  CAS  Google Scholar 

  107. Zhang K et al (2019) Recent advances in the nanocatalyst-assisted nabh4 reduction of nitroaromatics in water. ACS Omega 4(1):483–495

    Article  CAS  Google Scholar 

  108. Xi Z et al (2013) Study the catalyzing mechanism of dissolved redox mediators on bio-denitrification by metabolic inhibitors. Biores Technol 140:22–27

    Article  CAS  Google Scholar 

  109. Lu H et al (2014) A novel quinone/reduced graphene oxide composite as a solid-phase redox mediator for chemical and biological Acid Yellow 36 reduction. RSC Adv 4(88):47297–47303

    Article  CAS  Google Scholar 

  110. Kirchon A et al (2020) Effect of isomorphic metal substitution on the fenton and photo-fenton degradation of methylene blue using fe-based metal-organic frameworks. ACS Appl Mater Interfaces 12(8):9292–9299

    Article  CAS  Google Scholar 

  111. Atta AM et al (2020) Methylene blue catalytic degradation using silver and magnetite nanoparticles functionalized with a poly(ionic liquid) based on quaternized dialkylethanolamine with 2-acrylamido-2-methylpropane sulfonate-co-vinylpyrrolidone. ACS Omega 5(6):2829–2842

    Article  CAS  Google Scholar 

  112. Pereira L et al (2010) Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. J Hazard Mater 183(1–3):931–939

    Article  CAS  Google Scholar 

  113. Jeffery AA, Rao SR, Rajamathi M (2017) Preparation of MoS2–reduced graphene oxide (rGO) hybrid paper for catalytic applications by simple exfoliation–costacking. Carbon 112:8–16

    Article  CAS  Google Scholar 

  114. Alvarez L et al (2010) Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. J Hazard Mater 184(1–3):268–272

    Article  CAS  Google Scholar 

  115. Jing W et al (2009) Enhanced biodecolorization of azo dyes by electropolymerization-immobilized redox mediator. J Hazard Mater 168(2–3):1098–1104

    Article  CAS  Google Scholar 

  116. Zhang C et al (2014) Insoluble Fe-humic acid complex as a solid-phase electron mediator for microbial reductive dechlorination. Environ Sci Technol 48(11):6318–6325

    Article  CAS  Google Scholar 

  117. Cruz-Zavala AS et al (2016) Immobilization of metal–humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors. Biores Technol 207:39–45

    Article  CAS  Google Scholar 

  118. Zhu Z, Tao L, Li F (2014) 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter. J Hazardous Mater 279:436–443

    Article  CAS  Google Scholar 

  119. Zhu Z, Tao L, Li F (2013) Effects of dissolved organic matter on adsorbed Fe (II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions. Chemosphere 93(1):29–34

    Article  CAS  Google Scholar 

  120. Khan MN et al (2017) Catalytic activity of cobalt nanoparticles for dye and 4-nitro phenol degradation: a kinetic and mechanistic study. Int J Chem Kinetics 49(6):438–454

    Article  CAS  Google Scholar 

  121. Palaniselvam T, Aiyappa HB, Kurungot SJJoMC, (2012) An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites. J Mater Chem 22(45):23799–23805

    Article  CAS  Google Scholar 

  122. Mobasser S, Firoozi AA (2016) Review of nanotechnology applications in science and engineering. J Civil Eng Urban 6(4):84–93

    Google Scholar 

  123. Sanchez F, Sobolev K (2010) Nanotechnology in concrete–a review. Constr Build Mater 24(11):2060–2071

    Article  Google Scholar 

  124. Mondal A, Adhikary B, Mukherjee D (2015) Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation. Colloids Surf, A 482:248–257

    Article  CAS  Google Scholar 

  125. Srinivas PR et al (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124

    Article  CAS  Google Scholar 

  126. Kung HH, Kung MC (2004) Nanotechnology: applications and potentials for heterogeneous catalysis. Catal Today 97(4):219–224

    Article  CAS  Google Scholar 

  127. Bhowmik T, Kundu MK, Barman S (2015) Ultra small gold nanoparticles–graphitic carbon nitride composite: an efficient catalyst for ultrafast reduction of 4-nitrophenol and removal of organic dyes from water. RSC Adv 5(48):38760–38773

    Article  CAS  Google Scholar 

  128. Bharath G et al (2018) Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe 2 O 3@ Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties. Sci Rep 8(1):1–14

    Article  CAS  Google Scholar 

  129. Iqbal K et al (2017) A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants. J Mater Chem A 5(14):6716–6724

    Article  CAS  Google Scholar 

  130. Hanke T et al (2012) Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett 12(2):992–996

    Article  CAS  Google Scholar 

  131. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819

    Article  CAS  Google Scholar 

  132. Narasaiah P, Mandal BK, Sarada NC (2017) Biosynthesis of copper oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation. IOP Conference Series: Materials Sci Eng 263:022012

    Article  Google Scholar 

  133. David L, Moldovan BJN (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10(2):202

    Article  CAS  Google Scholar 

  134. Begum R et al (2017) Catalytic reduction of 4-nitrophenol using silver nanoparticles-engineered poly (N-isopropylacrylamide-co-acrylamide) hybrid microgels. Appl Organometall Chem 31(2):e3563

    Article  CAS  Google Scholar 

  135. Wu Y-G et al (2014) Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J Phys Chem C 118(12):6307–6313

    Article  CAS  Google Scholar 

  136. Zhang M et al (2007) Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 48(7):1989–1997

    Article  CAS  Google Scholar 

  137. Varadavenkatesan T, Selvaraj R, Vinayagam R (2016) Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J Mol Liq 221:1063–1070

    Article  CAS  Google Scholar 

  138. Naseem K et al (2018) Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J Clean Prod 187:296–307

    Article  CAS  Google Scholar 

  139. Joseph S (2015) Mathew BJMS Facile synthesis of silver nanoparticles and their application in dye degradation. Mater Sci Eng: C 195:90–97

    Article  CAS  Google Scholar 

  140. Ţǎlu Ş et al (2015) Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputtering. Mater Sci-Pol 33(1):137–143

    Article  CAS  Google Scholar 

  141. Saha J et al (2017) A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environ Res 27(5):245–250

    Article  CAS  Google Scholar 

  142. Farooqi ZH et al (2014) Effect of crosslinker feed content on catalaytic activity of silver nanoparticles fabricated in multiresponsive microgels. Korean J Chem Eng 31(9):1674–1680

    Article  CAS  Google Scholar 

  143. Farooqi ZH et al. (2014) Cobalt and nickel nanoparticles fabricated p (NIPAM-co-MAA) microgels for catalytic applications. e-Polymers, 14(5): 313–321.

  144. Yang D et al (2018) Poly (N-acryloylglycinamide) microgels as nanocatalyst platform. Polym Chem 9(4):517–524

    Article  CAS  Google Scholar 

  145. Farooqi ZH et al (2015) Fabrication of silver nanoparticles in poly (N-isopropylacrylamide-co-allylacetic acid) microgels for catalytic reduction of nitroarenes. Turk J Chem 39(3):576–588

    Article  CAS  Google Scholar 

  146. Ashraf S et al (2018) Synthesis and characterization of pH-responsive organic-inorganic hybrid material with excellent catalytic activity. J Inorg Organomet Polym Mater 28(5):1872–1884

    Article  CAS  Google Scholar 

  147. Begum R et al (2016) Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly (N-isopropylacrylamide-acrylic acid-acrylamide) microgels. Colloids Surf, A 511:17–26

    Article  CAS  Google Scholar 

  148. Nguyen T-N-P, Chen P-C, Huang C (2018) Nitrate removal and extracellular polymeric substances of autohydrogenotrophic bacteria under various pH and hydrogen flow rates. J Environ Sci 63:50–57

    Article  Google Scholar 

  149. Satapathy SS et al (2017) Thermo-responsive PNIPAM-metal hybrids: An efficient nanocatalyst for the reduction of 4-nitrophenol. Appl Surf Sci 420:753–763

    Article  CAS  Google Scholar 

  150. Shah LA et al (2016) Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. J Environ Chem Eng 4(3):3492–3497

    Article  CAS  Google Scholar 

  151. Farooqi ZH et al (2015) Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels. Turkish J Chem 39(1):96–107

    Article  CAS  Google Scholar 

  152. Kazeminava F, Arsalani N, Akbari A (2018) POSS nanocrosslinked poly (ethylene glycol) hydrogel as hybrid material support for silver nanocatalyst. Appl Organometall Chem 32(6):e4359

    Article  CAS  Google Scholar 

  153. Gangula A, Podila R, Karanam L, Janardhana C, Rao AM (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27(24):15268–15274

    Article  CAS  Google Scholar 

  154. Zayed MF, Eisa WH (2014) Phoenix dactylifera L leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochim Acta Part A Mole Biomole Spectrosc 121:238–244

    Article  CAS  Google Scholar 

  155. Guria MK, Majumdar M, Bhattacharyya M (2016) Green synthesis of protein capped nano-gold particle: An excellent recyclable nano-catalyst for the reduction of nitro-aromatic pollutants at higher concentration. J Mol Liq 222:549–557

    Article  CAS  Google Scholar 

  156. Sahiner N et al (2010) New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl Catal A 385(1):201–207

    Article  CAS  Google Scholar 

  157. Nimita Jebaranjitham J et al (2019) Fabrication of amine functionalized graphene oxide – AgNPs nanocomposite with improved dispersibility for reduction of 4-nitrophenol. Compos B Eng 171:302–309

    Article  CAS  Google Scholar 

  158. Alayoglu S, Eichhorn B (2008) Rh− Pt bimetallic catalysts: synthesis, characterization, and catalysis of core− shell, alloy, and monometallic nanoparticles. J Am Chem Soc 130(51):17479–17486

    Article  CAS  Google Scholar 

  159. Sinfelt JH (1973) Supported “bimetallic cluster” catalysts. J Catal 29(2):308–315

    Article  CAS  Google Scholar 

  160. Sinfelt J, Cusumano J (1983) Bimetallic catalysts. discoveries, concepts and applications/JH Sinfelt.

  161. Ghosh SK et al (2004) Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A 268(1):61–66

    Article  CAS  Google Scholar 

  162. Ma Y, Wu X, Zhang G (2017) Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study. Appl Catal B 205:262–270

    Article  CAS  Google Scholar 

  163. Lu Y et al (2010) In situ growth of catalytic active Au− Pt bimetallic nanorods in thermoresponsive core− shell microgels. ACS Nano 4(12):7078–7086

    Article  CAS  Google Scholar 

  164. Wu T et al (2013) Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A 1(25):7384–7390

    Article  CAS  Google Scholar 

  165. Xu Z et al (2019) Catalytic reduction of 4-nitrophenol over graphene supported Cu@Ni bimetallic nanowires. Mater Chem Phys 227:64–71

    Article  CAS  Google Scholar 

  166. Gao X et al (2019) Facile synthesis of PdNiP/Reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Mater Chem Phys 222:391–397

    Article  CAS  Google Scholar 

  167. Begum R et al 2017 Catalytic reduction of 4‐nitrophenol using silver nanoparticles‐engineered poly (N‐isopropylacrylamide‐co‐acrylamide) hybrid microgels. 31(2): e3563.

  168. Ţǎlu Ş et al (2015) Surface Morphol Titanium Nitride Thin Films Synthesized by DC Reactive Magnetron Sputtering 33(1):137–143

    Google Scholar 

  169. Farooqi ZH et al (2014) Cobalt and nickel nanoparticles fabricated p (NIPAM-co-MAA). Microgels Catalytic Appl 14(5):313–321

    CAS  Google Scholar 

  170. Farooqi ZH, et al (2015) Fabrication of silver nanoparticles in poly (N-isopropylacrylamide-co-allylacetic acid) microgels for catalytic reduction of nitroarenes. 39(3): 576–588.

  171. Ashraf S, et al (2018) Synthesis and characterization of pH-responsive organic–inorganic hybrid material with excellent catalytic activity, 28(5): 1872–1884.

  172. Begum R et al (2016) Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly (N-isopropylacrylamide-acrylic acid-acrylamide) microgels. 511: 17–26.

  173. Begum R et al (2018) Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol. 72:43–52

    Google Scholar 

  174. Farooqi ZH et al (2015) Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels. 39(1):96–107

    CAS  Google Scholar 

  175. Khan SR, et al (2013) Synthesis, characterization, and silver nanoparticles fabrication in N-isopropylacrylamide-based polymer microgels for rapid degradation of p-nitrophenol. 34(10): 1324–1333.

  176. Dai Y, Li, Y, Wang, SJJoC (2015) ABC triblock copolymer-stabilized gold nanoparticles for catalytic reduction of nitrophenol. 329: 425–430.

  177. Kuroda K, Ishida T, Haruta, MJJoMCAC (2009) Reduction of nitrophenol to aminophenol over Au nanoparticles deposited on PMMA. 298(1–2): 7–11.

  178. Pozun ZD et al (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles 117(15):7598–7604

    CAS  Google Scholar 

  179. Esumi K, Isono R, Yoshimura TJL (2004) Preparation of PAMAM− and PPI− metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. 20(1): 237–243.

  180. Ajmal M, Farooqi, ZH, Siddiq MJKJoCE (2013) Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity. 30(11): 2030–2036.

  181. Zhai L et al (2018) Synthesis, characterization, and antibacterial property of eco-friendly Ag/cellulose nanocomposite film. 67(7): 420–426.

  182. ur Rehman S, et al (2015) Cationic microgels embedding metal nanoparticles in the reduction of dyes and nitro-phenols. 265: 201–209.

  183. Yao T, et al (2013) Preparation of yolk–shell Fe x O y/Pd@ mesoporous SiO 2 composites with high stability and their application in catalytic reduction of 4-nitrophenol. 5(13): 5896–5904.

  184. Singh J, Dhaliwal AJJoP, Environment t (2021) Effective removal of methylene blue dye using silver nanoparticles containing grafted polymer of guar gum/acrylic acid as novel adsorbent. 29(1): 71–88.

  185. Ezhilarasu D, Murugan EJJC (2012) Sci, Synthesis, characterization and catalytic activity of ruthenium and silver immobilized heterogeneous nanoparticle catalysts 2:61–75

    Google Scholar 

  186. Zeng T et al (2013) situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene 134:26–33

    Google Scholar 

  187. Rai RK et al (2014) Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water 53(6):2904–2909

    CAS  Google Scholar 

  188. Du X, Yao L, He JJCAEJ (2012) One‐pot fabrication of noble‐metal nanoparticles that are encapsulated in hollow silica nanospheres: dual roles of poly (acrylic acid). 18(25): 7878–7885.

  189. Seo E et al (2013) Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction 117(22):11686–11693

    CAS  Google Scholar 

  190. Naseem K, Begum, R, Farooqi ZHJPC (2018) Platinum nanoparticles fabricated multiresponsive microgel composites: synthesis, characterization, and applications. 39(7): 2167–2180.

  191. Naseem K et al (2017) Catalytic reduction of 2-nitroaniline: a review. Environ Sci Pollut Res 24(7):6446–6460

    Article  CAS  Google Scholar 

  192. Mohanta J, Satapathy S, Si SJC (2016) Porous silica‐coated gold nanorods: a highly active catalyst for the reduction of 4‐nitrophenol. 17(3): 364–368.

  193. Nasrollahzadeh M et al (2016) In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram Int 42(7):8587–8596

    Article  CAS  Google Scholar 

  194. Chen L-H et al (2020) Photocatalytic properties of graphene/gold and graphene oxide/gold nanocomposites synthesized by pulsed laser induced photolysis 10(10):1985

    CAS  Google Scholar 

  195. Mondal B et al (2016) Graphene induced porphyrin nano-aggregates for efficient electron transfer and photocurrent generation 4(25):6027–6036

    CAS  Google Scholar 

  196. Bharath G, et al (2021) Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere. 281: 116990.

  197. Sravanthi K, Ayodhya D, Swamy PYJMSfET (2019) Green synthesis, characterization and catalytic activity of 4-nitrophenol reduction and formation of benzimidazoles using bentonite supported zero valent iron nanoparticles. 2(2): p. 298–307.

  198. Shi L et al (2012) High catalytic performance of gold nanoparticle–gelatin mesoporous composite thin films. 22(39): 21117–21124.

  199. Dauthal P, Mukhopadhyay MJI, ec research (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. 51(40): 13014–13020.

  200. Zhang W et al (2015) Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl Mater Interfaces 7(3):1943–1948

    Article  CAS  Google Scholar 

  201. Hatamifard A, Nasrollahzadeh M, Lipkowski J (2015) Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv 5(111):91372–91381

    Article  CAS  Google Scholar 

  202. Jia Z et al (2014) Catalytic bubble-free hydrogenation reduction of azo dye by porous membranes loaded with palladium nanoparticles. J Environ Sci 26(2):478–482

    Article  CAS  Google Scholar 

  203. Rajesh R, Kumar SS, Venkatesan RJNJoC (2014) Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers. 38(4): 1551–1558.

  204. Wu T, et al (2013) Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. 1(25): 7384–7390.

  205. Din MI et al (2020) Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review 50(4):322–338

    CAS  Google Scholar 

  206. Wunder S, et al (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. 114(19): 8814–8820.

  207. Abay AK, Chen X, Kuo D-HJNJoC (2017) Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants. 41(13): 5628–5638.

  208. Abay AK, Chen X, Kuo D-H (2017) Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants. New J Chem 41(13):5628–5638

    Article  CAS  Google Scholar 

  209. Akhtar K et al (2020) Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. Environ Sci Pollut Res 27(1):823–836

    Article  CAS  Google Scholar 

  210. Ahsan MA et al (2019) (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surface Sci 497:143608

    Article  CAS  Google Scholar 

  211. Gangapuram BR et al (2018) Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants 1167:305–315

    CAS  Google Scholar 

  212. Bordbar M, Mortazavimanesh NJES, Research P (2017) Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. 24(4): 4093–4104.

  213. Gangarapu M et al (2017) A high-performance catalytic and recyclability of phyto-synthesized silver nanoparticles embedded in natural polymer. J Cluster Sci 28(6):3127–3138

    Article  CAS  Google Scholar 

  214. Khazaei M, et al (2017) Highly efficient reusable Pd nanoparticles based on eggshell: green synthesis, characterization and their application in catalytic reduction of variety of organic dyes and ligand-free oxidative hydroxylation of phenylboronic acid at room temperature. 73(38): 5613–5623.

  215. Kundu S et al (2017) Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures. J Colloid Interface Sci 498:248–262

    Article  CAS  Google Scholar 

  216. Omidvar A et al (2017) Fabrication, characterization and application of GO/Fe3O4/Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes. Chem Eng Res Des 121:339–347

    Article  CAS  Google Scholar 

  217. Veisi H, S Azizi, Mohammadi PJJocp (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. 170: 1536–1543.

  218. Shah D, Kaur H (2014) Resin-trapped gold nanoparticles: An efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling. J Mol Catal A: Chem 381:70–76

    Article  CAS  Google Scholar 

  219. Kalbasi RJ, Nourbakhsh AA, Babaknezhad F (2011) Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds. Catal Commun 12(11):955–960

    Article  CAS  Google Scholar 

  220. Layek K et al (2012) Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem 14(11):3164–3174

    Article  CAS  Google Scholar 

  221. Saha S, et al (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. 26(4): 2885–2893.

  222. Wang Z et al (2014) Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv 4(26):13644–13651

    Article  CAS  Google Scholar 

  223. Wang X et al (2014) Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J Mater Sci 49(14):5056–5065. https://doi.org/10.1007/s10853-014-8212-5

    Article  CAS  Google Scholar 

  224. Choi Y et al (2011) Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J Mater Chem 21(39):15431–15436

    Article  CAS  Google Scholar 

  225. Dong Z et al (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B 158:129–135

    Article  CAS  Google Scholar 

  226. Gao J et al (2015) Plasma-assisted synthesis of Ag nanoparticles immobilized in mesoporous cellular foams and their catalytic properties for 4-nitrophenol reduction. Microporous Mesoporous Mater 207:149–155

    Article  CAS  Google Scholar 

  227. Sahiner N (2013) Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci 38(9):1329–1356

    Article  CAS  Google Scholar 

  228. Islam M et al (2010) Synthesis, characterization and catalytic activities of a reusable polymer-anchored palladium (II) complex: effective catalytic hydrogenation of various organic substrates. Transition Met Chem 35(4):427–435

    Article  CAS  Google Scholar 

  229. Li J, Liu C-Y, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430

    Article  CAS  Google Scholar 

  230. Xie M et al (2013) Pt nanoparticles supported on carbon coated magnetic microparticles: an efficient recyclable catalyst for hydrogenation of aromatic nitro-compounds. RSC Adv 3(26):10329–10334

    Article  CAS  Google Scholar 

  231. Yang H et al (2014) Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J Mater Chem A 2(30):12060–12067

    Article  CAS  Google Scholar 

  232. Ghosh BK et al (2015) Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol 269:371–378

    Article  CAS  Google Scholar 

  233. Dong Z et al (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B 158–159:129–135

    Article  CAS  Google Scholar 

  234. Chandra A, Singh M (2018) Biosynthesis of amino acid functionalized silver nanoparticles for potential catalytic and oxygen sensing applications. Inorganic Chem Front 5(1):233–257

    Article  CAS  Google Scholar 

  235. Rauf MA et al (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157(2):373–378

    Article  CAS  Google Scholar 

  236. Laoufi I et al (2011) Size and catalytic activity of supported gold nanoparticles: an in operando study during CO oxidation. J Phys Chem C 115(11):4673–4679

    Article  CAS  Google Scholar 

  237. Hamity M et al (2008) UV–vis photodegradation of dyes in the presence of colloidal Q-CdS. J Photochem Photobiol, A 200(2):445–450

    Article  CAS  Google Scholar 

  238. Chandra A, Singh MJICF (2018) Biosynthesis of amino acid functionalized silver nanoparticles for potential catalytic and oxygen sensing applications. 5(1): 233–257.

  239. Saad A, et al (2016) Ligand-modified mesoporous silica SBA-15/silver hybrids for the catalyzed reduction of methylene blue. 6(62): 57672–57682.

  240. Recio-Sánchez G et al (2019) Assessing the effectiveness of green synthetized silver nanoparticles with Cryptocarya alba extracts for remotion of the organic pollutant methylene blue dye. Environ Sci Pollut Res 26(15):15115–15123

    Article  CAS  Google Scholar 

  241. Kamali M, Samari F, Sedaghati F (2019) Low-temperature phyto-synthesis of copper oxide nanosheets: Its catalytic effect and application for colorimetric sensing. Mater Sci Eng: C 103:109744

    Article  CAS  Google Scholar 

  242. Kushwah M et al (2019) Enhanced catalytic activity of chemically synthesized Au/Ag/Cu trimetallic nanoparticles. Mater Res Express 6(9):095013

    Article  CAS  Google Scholar 

  243. Gangapuram BR et al (2018) Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J Mol Struct 1167:305–315

    Article  CAS  Google Scholar 

  244. Bordbar M, Mortazavimanesh N (2017) Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. Environ Sci Pollution Res 24(4):4093–4104

    Article  CAS  Google Scholar 

  245. Hasan Z et al (2016) Catalytic decoloration of commercial azo dyes by copper-carbon composites derived from metal organic frameworks. J Alloy Compd 689:625–631

    Article  CAS  Google Scholar 

  246. Issaabadi Z, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J Clean Prod 142:3584–3591

    Article  CAS  Google Scholar 

  247. Khodadadi B et al (2017) Green synthesis of Ag nanoparticles/clinoptilolite using vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes. J Alloy Compd 719:82–88

    Article  CAS  Google Scholar 

  248. Momeni SS, Nasrollahzadeh M, Rustaiyan A (2016) Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179

    Article  CAS  Google Scholar 

  249. Yeganeh-Faal A, et al (2017) Green synthesis of the Ag/ZnO nanocomposite using <i>Valeriana officinalis L.</i> root extract: application as a reusable catalyst for the reduction of organic dyes in a very short time. IET Nanobiotechnology 11: 669–676.

  250. Ke R et al (2016) Facile synthesis of hexagonal Ni0.85Se nanosheet and its application as adsorbent and catalyst to dyes. Chem Phys Lett 651:103–108

    Article  CAS  Google Scholar 

  251. Gan Z et al (2013) Controlled synthesis of Au-loaded Fe 3 O 4@ C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes. Dalton Trans 42(24):8597–8605

    Article  CAS  Google Scholar 

  252. Zhang Y et al (2014) Hierarchical architectures of monodisperse porous Cu microspheres: synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. J Mater Chem A 2(30):11966–11973

    Article  CAS  Google Scholar 

  253. Yang X et al (2014) Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J Mater Chem A 2(24):9040–9047

    Article  CAS  Google Scholar 

  254. Ganapuram BR et al (2015) Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int Nano Lett 5(4):215–222

    Article  CAS  Google Scholar 

  255. Indana MK et al (2016) A novel green synthesis and characterization of silver nanoparticles using gum tragacanth and evaluation of their potential catalytic reduction activities with methylene blue and Congo red dyes. J Analy Sci Technol 7(1):19

    Article  CAS  Google Scholar 

  256. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735

    Article  CAS  Google Scholar 

  257. Dutt S, et al (2015) Gold core–polyaniline shell composite nanowires as a substrate for surface enhanced Raman scattering and catalyst for dye reduction. 39(2): 902–908.

  258. Ai L, Zeng C, Wang QJCC (2011) One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal Commun 14(1):68–73

    Article  CAS  Google Scholar 

  259. Atarod M, Nasrollahzadeh M, Sajadi SM (2016) Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J Colloid Interface Sci 462:272–279

    Article  CAS  Google Scholar 

  260. Deng Z et al (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4(10):5625–5632

    Article  CAS  Google Scholar 

  261. Zhang B, et al (2012) One-pot interfacial synthesis of Au nanoparticles and Au–polyaniline nanocomposites for catalytic applications. 14(5): 1542–1544.

  262. Xuan S et al (2009) Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites. Langmuir 25(19):11835–11843

    Article  CAS  Google Scholar 

  263. Zhang P et al (2014) A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering. Nanoscale 6(10):5343–5350

    Article  CAS  Google Scholar 

  264. Kalwar NH et al (2013) Fabrication of small l-threonine capped nickel nanoparticles and their catalytic application. Appl Catal A 453:54–59

    Article  CAS  Google Scholar 

  265. Chen M et al (2014) Fast catalytic reduction of an azo dye by recoverable and reusable Fe 3 O 4@ PANI@ Au magnetic composites. New J Chem 38(9):4566–4573

    Article  CAS  Google Scholar 

  266. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016) Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J Alloy Compd 680:309–314

    Article  CAS  Google Scholar 

  267. Zheng Y, Wang A (2012) Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J Mater Chem 22(32):16552–16559

    Article  CAS  Google Scholar 

  268. Rajesh R, Kumar SS, Venkatesan R (2014) Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers. New J Chem 38(4):1551–1558

    Article  CAS  Google Scholar 

  269. Rajalakshmi S et al (2017) Enhanced photocatalytic activity of metal oxides/β-cyclodextrin nanocomposites for decoloration of Rhodamine B dye under solar light irradiation 7(1):115–127

    CAS  Google Scholar 

  270. Zhang B et al (2012) One-pot interfacial synthesis of Au nanoparticles and Au–polyaniline nanocomposites for catalytic applications. CrystEngComm 14(5):1542–1544

    Article  CAS  Google Scholar 

  271. Khan Z et al (2017) Cationic surfactant assisted morphology of Ag@Cu, and their catalytic reductive degradation of Rhodamine B. J Mol Liq 248:1096–1108

    Article  CAS  Google Scholar 

  272. Du S, et al (2017) Polydopamine-coated Fe3O4 nanoparticles as synergistic redox mediators for catalytic reduction of azo dyes. 12(03): 1750037.

  273. Sajjadi M, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci 497:1–13

    Article  CAS  Google Scholar 

  274. Nasrollahzadeh M et al (2018) Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J Alloy Compd 763:1024–1034

    Article  CAS  Google Scholar 

  275. Khazaei M et al (2017) Highly efficient reusable Pd nanoparticles based on eggshell: Green synthesis, characterization and their application in catalytic reduction of variety of organic dyes and ligand-free oxidative hydroxylation of phenylboronic acid at room temperature. Tetrahedron 73(38):5613–5623

    Article  CAS  Google Scholar 

  276. Lajevardi A et al (2019) Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue. J Mol Liq 276:371–378

    Article  CAS  Google Scholar 

  277. Ji X et al (2018) A monodisperse anionic silver nanoparticles colloid: Its selective adsorption and excellent plasmon-induced photodegradation of Methylene Blue. J Colloid Interface Sci 523:98–109

    Article  CAS  Google Scholar 

  278. Tian Q et al (2017) Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue. J Colloid Interface Sci 491:294–304

    Article  CAS  Google Scholar 

  279. Xie Y et al (2014) Highly regenerable mussel-inspired Fe3O4@Polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl Mater Interfaces 6(11):8845–8852

    Article  CAS  Google Scholar 

  280. Xu Y et al (2020) Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl Catalysis B: Environmental 260:118142

    Article  CAS  Google Scholar 

  281. Jia Z et al (2019) Cotton fiber-biotemplated synthesis of Ag fibers: Catalytic reduction for 4-nitrophenol and SERS application. Solid State Sci 94:120–126

    Article  CAS  Google Scholar 

  282. Li H et al (2019) Preparation of silver-nanoparticle-loaded magnetic biochar/poly(dopamine) composite as catalyst for reduction of organic dyes. J Colloid Interface Sci 555:460–469

    Article  CAS  Google Scholar 

  283. Li Z-X et al (2018) Metal-directed assembly of five 4-connected mofs: one-pot syntheses of MOF-Derived MxSy@C composites for photocatalytic degradation and supercapacitors. Cryst Growth Des 18(2):979–992

    Article  CAS  Google Scholar 

  284. Sharma K, Vyas RK, Dalai AK (2017) Thermodynamic and kinetic studies of methylene blue degradation using reactive adsorption and its comparison with adsorption. J Chem Eng Data 62(11):3651–3662

    Article  CAS  Google Scholar 

  285. Wei Q et al (2016) In situ formation of gold nanoparticles on magnetic halloysite nanotubes via polydopamine chemistry for highly effective and recyclable catalysis. RSC Adv 6(35):29245–29253

    Article  CAS  Google Scholar 

  286. Sahiner N, Sagbas S, Aktas N (2015) Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(tannic acid)–Cu ionic liquid composites. RSC Adv 5(24):18183–18195

    Article  CAS  Google Scholar 

  287. Liang Y et al (2017) Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir 33(31):7606–7614

    Article  CAS  Google Scholar 

  288. Cui K et al (2018) Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes. J Hazard Mater 350:66–75

    Article  CAS  Google Scholar 

  289. Sahoo PK et al (2018) Freeze-casting of multifunctional cellular 3d-graphene/ag nanocomposites: synergistically affect supercapacitor, catalytic, and antibacterial properties. ACS Sustainable Chem Eng 6(6):7475–7487

    Article  CAS  Google Scholar 

  290. Luo J et al (2015) Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. J Hazard Mater 300:615–623

    Article  CAS  Google Scholar 

  291. Sohni S et al (2018) Room temperature preparation of lignocellulosic biomass supported heterostructure (Cu+Co@OPF) as highly efficient multifunctional nanocatalyst using wetness co-impregnation. Colloids Surf, A 549:184–195

    Article  CAS  Google Scholar 

  292. Veisi H et al (2019) Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. Mater Sci Eng, C 100:445–452

    Article  CAS  Google Scholar 

  293. Veisi H et al (2019) Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng, C 97:624–631

    Article  CAS  Google Scholar 

  294. Atta AM et al (2019) Hybrid ionic silver and magnetite microgels nanocomposites for efficient removal of methylene blue. Molecules 24(21):3867

    Article  CAS  Google Scholar 

  295. Emam HE, Ahmed HBJIjobm (2019) Comparative study between homo-metallic hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int J Biol Macromole 138:450–461

    Article  CAS  Google Scholar 

  296. de Jesús Ruíz-Baltazar Á et al (2019) Eco-friendly synthesis of Fe3O4 nanoparticles: evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results in Phys 12:989–995

    Article  Google Scholar 

  297. Singh J, Dhaliwal AJJoP, (2021) Environment, effective removal of methylene blue dye using silver nanoparticles containing grafted polymer of Guar Gum/Acrylic Acid as Novel Adsorbent. J Polym Environ, 29(1): 71–88.

  298. Nasrollahzadeh M, Atarod M, Sajadi SM (2016) Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: a highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Appl Surf Sci 364:636–644

    Article  CAS  Google Scholar 

  299. Zheng Y, Wang, AJJoMC (2012) Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. 22(32): 16552–16559.

  300. Chen M, et al (2014) Fast catalytic reduction of an azo dye by recoverable and reusable Fe 3 O 4@ PANI@ Au magnetic composites. 38(9): 4566–4573.

  301. Wang W et al (2014) Au nanoparticles decorated Kapok fiber by a facile noncovalent approach for efficient catalytic decoloration of Congo Red and hydrogen production. Chem Eng J 237:336–343

    Article  CAS  Google Scholar 

  302. Kamal T, Khan SB, Asiri AMJC (2016) Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction 23(3):1911–1923

    CAS  Google Scholar 

  303. Kalwar NH et al (2013) Fabrication of small l-threonine capped nickel nanoparticles and their catalytic application 453:54–59

    CAS  Google Scholar 

  304. Ansari TM et al (2019) Synthesis and characterization of magnetic poly (acrylic acid) hydrogel fabricated with cobalt nanoparticles for adsorption and catalytic applications. J Iran Chem Soc 16(12):2765–2776

    Article  CAS  Google Scholar 

  305. Azzam EM et al (2019) Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/Surfactant nanocomposites. J Water Process Eng 28:311–321

    Article  Google Scholar 

  306. Das R et al (2019) Silver decorated magnetic nanocomposite (Fe3O4@ PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl Catal B 244:546–558

    Article  CAS  Google Scholar 

  307. Ding W et al (2019) Bovine serum albumin assisted synthesis of Ag/Ag2O/ZnO photocatalyst with enhanced photocatalytic activity under visible light. Colloids Surf, A 568:131–140

    Article  CAS  Google Scholar 

  308. Hu Y et al (2018) Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U (VI) and Eu (III) on magnetic MnFe2O4 nanocubes. Chem Eng J 349:347–357

    Article  CAS  Google Scholar 

  309. Li L, et al (2019) Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment. Sci Total Environ, 694: 133697.

  310. Marković M, et al. Supplementary material for the article: Marković M, Marinović S, Mudrinić T, Ajduković M, Jović-Jovičić N, Mojović Z, Orlić J, Milutinović-Nikolić A, Banković, P. Co (II) Impregnated Al (III)-Pillared Montmorillonite–Synthesis, Characterization and Catalytic Properties in Oxone® Activation for Dye Degradation. Applied Clay Science 2019, 182. 10.1016/j. clay. 2019.105276.

  311. Wang X, et al (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62(8): 933–967.

  312. Mohamed R et al (2013) Nano Cu Metal Doped on TiO2–SiO2 nanoparticle catalysts in photocatalytic degradation of direct blue dye. J Nanosci Nanotechnol 13(7):4975–4980

    Article  CAS  Google Scholar 

  313. Choi J et al (2017) Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Curr Appl Phys 17(2):137–145

    Article  Google Scholar 

  314. Edla R et al (2015) Highly photo-catalytically active hierarchical 3D porous/urchin nanostructured Co3O4 coating synthesized by pulsed laser deposition. Appl Catal B 166:475–484

    Article  CAS  Google Scholar 

  315. Han J et al (2016) Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange. Appl Catal A 527:72–80

    Article  CAS  Google Scholar 

  316. Lai X et al (2019) Rapid microwave-assisted bio-synthesized silver/Dandelion catalyst with superior catalytic performance for dyes degradation. J Hazard Mater 371:506–512

    Article  CAS  Google Scholar 

  317. Zhang C et al (2021) Catalytic mechanism and pathways of 1, 2-dichloropropane oxidation over LaMnO3 perovskite: an experimental and DFT study. J Hazard Mater 402:123473

    Article  CAS  Google Scholar 

  318. Cheriyan S et al (2018) Doping effect on monolayer MoS2 for visible light dye degradation-A DFT study. Superlattices Microstruct 116:238–243

    Article  CAS  Google Scholar 

  319. Esrafili MD, Nurazar RJS (2014) Microstructures, A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattices Microstruct 67:54–60

    Article  CAS  Google Scholar 

  320. Matos J et al (2019) C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations. J Colloid Interface Sci 547:14–29

    Article  CAS  Google Scholar 

  321. Zanjanchi F et al (2011) Photo-oxidation of phenylazonaphthol dyes and their reactivity analysis in the gas phase and adsorbed on cellulose fibers states using DFT and TD-DFT 89(1):16–22

    CAS  Google Scholar 

  322. Zeng H et al (2018) Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling. J Colloid Interface Sci 515:92–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are obliged to the higher education commission (HEC) Pakistan, SRGP-21-1669, and for financial support through indigenous PhD fellowship program.

Funding

No funding sources are applicable to this study.

Author information

Authors and Affiliations

Authors

Contributions

MN and AR conceptualized current study and reviewed literature. MI and SN performed data analysis, checked and drafted manuscript. AR, AH, and JH reviewed manuscript and provided their expert review. All author contributed to current article and approved final version.

Corresponding authors

Correspondence to Muhammad Ikram or Sadia Naz.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, M., Rafiq, A., Ikram, M. et al. Elimination of dyes by catalytic reduction in the absence of light: A review. J Mater Sci 56, 15572–15608 (2021). https://doi.org/10.1007/s10853-021-06279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06279-1

Navigation