Skip to main content

Advertisement

Log in

One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ion battery anodes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth has been deemed to be the promising anode material for sodium-ion batteries on account of large volumetric capacity (3800 mAh cm−3) and high electrical conductivity. However, huge volume change during sodiation/desodiation usually causes pulverization of electrode, leading to poor rate performance and cycling stability. Herein, one-step large-scale fabrication of bismuth@N-doped carbon (Bi@C) is proposed to construct well-behaved electrode materials for sodium-ion batteries. Surprisingly, the Bi@C anode presents superior sodium storage performance, manifesting a high specific capacity (346 mAh g−1 at 0.1 A g−1), excellent rate stability (274 mAh g−1 under ultrahigh current density of 50 A g−1) and long life span (344 mAh g−1 at 1 A g−1 after cycling over 1500 times, 0.003% loss per cycle). Such excellent performances of Bi@C are attributed to the nano-sized Bi particles (~ 15 nm) encapsulated by thin carbon layer doped with N. These structural characteristics optimize the ion transfer and increase the accessible area between electrode and electrolyte, and then give a high capacitive contribution to the capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Assat G, Tarascon J-M (2018) Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy 3:373–386

    CAS  Google Scholar 

  2. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Google Scholar 

  3. Winter M, Barnett B, Xu K (2018) Before li ion batteries. Chem Rev 118:11433–11456

    CAS  Google Scholar 

  4. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    CAS  Google Scholar 

  5. Li Z, Yin Q, Hu W et al (2019) Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries. J Mater Sci 54:9025–9033. https://doi.org/10.1007/s10853-019-03539-z

    Article  CAS  Google Scholar 

  6. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120

    CAS  Google Scholar 

  7. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    CAS  Google Scholar 

  8. Yang D, Li S, Cheng D et al (2021) Nitrogen, sulfur, and phosphorus codoped hollow carbon microtubes derived from silver willow blossoms as a high-performance anode for sodium-ion batteries. Energy Fuels 35:2795–2804

    CAS  Google Scholar 

  9. Xie F, Zhang L, Ye C, Jaroniec M, Qiao SZ (2019) The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv Mater 31:1800492

    Google Scholar 

  10. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    CAS  Google Scholar 

  11. Wang L, Wang C, Li F, Cheng F, Chen J (2017) In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun 54:38–41

    Google Scholar 

  12. Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G (2016) An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ Sci 9:3399–3405

    CAS  Google Scholar 

  13. Ma C, Fan Q, Dirican M, Song Y, Zhang X, Shi J (2020) Porous carbon nanosheets derived from expanded graphite for supercapacitors and sodium-ion batteries. J Mater Sci 55:16323–16333. https://doi.org/10.1007/s10853-020-05154-9

    Article  CAS  Google Scholar 

  14. Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T (2018) From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater 8:1703268

    Google Scholar 

  15. Xiao B, Rojo T, Li X (2019) Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem 12:133–144

    CAS  Google Scholar 

  16. Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866

    CAS  Google Scholar 

  17. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884

    CAS  Google Scholar 

  18. Kubota K, Komaba S (2015) Review—practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162:A2538–A2550

    CAS  Google Scholar 

  19. Zou G, Hou H, Ge P et al (2018) Metal-organic framework-derived materials for sodium energy storage. Small 14:1702648

    Google Scholar 

  20. Alvin S, Yoon D, Chandra C et al (2019) Revealing sodium ion storage mechanism in hard carbon. Carbon 145:67–81

    CAS  Google Scholar 

  21. Jin Q, Li W, Wang K et al (2019) Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. J Mater Chem A 7:10239–10245

    CAS  Google Scholar 

  22. Xu F, Qiu Y, Han H et al (2020) Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage. Carbon 159:140–148

    CAS  Google Scholar 

  23. Li X, Ni J, Savilov SV, Li L (2018) Materials based on antimony and bismuth for sodium storage. Chem Eur J 24:13719–13727

    CAS  Google Scholar 

  24. Gao H, Niu J, Zhang C, Peng Z, Zhang Z (2018) A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries. ACS Nano 12:3568–3577

    CAS  Google Scholar 

  25. Liu J, Yu L, Wu C et al (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17:2034–2042

    CAS  Google Scholar 

  26. Ruiz O, Cochrane M, Li M et al (2018) Enhanced cycling stability of macroporous bulk antimony-based sodium-ion battery anodes enabled through active/inactive composites. Adv Energy Mater 8:1801781

    Google Scholar 

  27. Palaniselvam T, Goktas M, Anothumakkool B et al (2019) Sodium storage and electrode dynamics of tin–carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater 29:1900790

    Google Scholar 

  28. Wang L, Voskanyan AA, Chan KY, Qin B, Li F (2019) Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Appl Energy Mater 3:565–572

    Google Scholar 

  29. Yang H, Chen LW, He F et al (2020) Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett 20:758–767

    CAS  Google Scholar 

  30. Cheng X, Li D, Wu Y, Xu R, Yu Y (2019) Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A 7:4913–4921

    CAS  Google Scholar 

  31. Liang L, Xu Y, Li Y et al (2017) Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A 5:1749–1755

    CAS  Google Scholar 

  32. Moradi M, Li Z, Qi J et al (2015) Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. Nano Lett 15:2917–2921

    CAS  Google Scholar 

  33. Webb SA, Baggetto L, Bridges CA, Veith GM (2014) The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources 248:1105–1117

    CAS  Google Scholar 

  34. Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y (2019) Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater 29:1809195

    Google Scholar 

  35. Chen J, Fan X, Ji X et al (2018) Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ Sci 11:1218–1225

    CAS  Google Scholar 

  36. Qiu J, Li S, Su X et al (2017) Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage. Chem Eng J 320:300–307

    CAS  Google Scholar 

  37. Sottmann J, Herrmann M, Vajeeston P et al (2016) How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater 28:2750–2756

    CAS  Google Scholar 

  38. Xu F, Zhai Y, Zhang E et al (2020) Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched n-doped porous carbon nanosheets. Angew Chem Int Ed 59:2–10

    Google Scholar 

  39. Li Z, Cheng A, Zhong W et al (2020) Facile fabrication of carbon nanosheets with hierarchically porous structure for high-performance supercapacitor. Microp Mesop Mater 306:110440

    CAS  Google Scholar 

  40. Li Z, Yu P, Zhong W et al (2021) Hydrothermal intercalation for the synthesis of novel three-dimensional hierarchically superstructured carbons composed of graphene-like ultrathin nanosheets. Carbon 176:1–10

    CAS  Google Scholar 

  41. Wang C, Wang L, Li F, Cheng F, Chen J (2017) Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater 29:1702212

    Google Scholar 

  42. Xiong P, Bai P, Li A et al (2019) Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater 31:1904771

    CAS  Google Scholar 

  43. Liu S, Luo Z, Guo J, Pan A, Cai Z, Liang S (2017) Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem Commun 81:10–13

    CAS  Google Scholar 

  44. Su D, Dou S, Wang G (2015) Bismuth: A new anode for the Na-ion battery. Nano Energy 12:88–95

    CAS  Google Scholar 

  45. Xiang J, Liu Z, Song T (2018) Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries. ChemistrySelect 3:8973–8979

    CAS  Google Scholar 

  46. Yang F, Yu F, Zhang Z, Zhang K, Lai Y, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338

    CAS  Google Scholar 

  47. Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522

    CAS  Google Scholar 

  48. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Program of Guangdong Province of China (2019A050510012, 2020A050515007) and Guangzhou emerging industry development fund project of Guangzhou development and reform commission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenghui Li or Haiyan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhong, W., Cheng, D. et al. One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ion battery anodes. J Mater Sci 56, 11000–11010 (2021). https://doi.org/10.1007/s10853-021-05978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05978-z

Navigation