Skip to main content

Advertisement

Log in

Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries (SIBs) due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of ≈ 300 S/m. However, its large volume expansion and contraction during sodiation/desodiation lead to poor cycling stability. In this work, a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes (BP/G/CNTs) composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process. The unique structure can mitigate the effect of volume changes and provide additional electron conduction pathways during cycles. Furthermore, the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon, thereby improving the cycling and rate performance. As a result, the BP/G/CNTs composite delivers a high initial Coulombic efficiency (89.6%) and a high specific capacity for SIBs (1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g). Based on these results, the integrated strategy of one- and two-dimensional carbon materials can guide other anode materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  Google Scholar 

  2. Wu HB, Chen JS, Hng HH et al (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542

    Article  Google Scholar 

  3. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429

    Article  Google Scholar 

  4. Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7(1):14–18

    Article  Google Scholar 

  5. Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360

    Article  Google Scholar 

  6. Yabuuchi N, Kubota K, Dahbi M et al (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  Google Scholar 

  7. Zhou D, Li XG, Fan LZ et al (2017) Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochim Acta 230:212–221

    Article  Google Scholar 

  8. Yang JQ, Zhou XL, Wu DH et al (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29(6):1604108

    Article  Google Scholar 

  9. Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  Google Scholar 

  10. Palomares V, Serras P, Villaluenga I et al (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901

    Article  Google Scholar 

  11. Li W, Yao C, Wu XL et al (2013) New development of lithium-sulfur batteries. J Mol Sci 29(6):448–460 ((in Chinese))

    MathSciNet  Google Scholar 

  12. Song JX, Yu ZX, Gordin ML et al (2014) Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett 14(11):6329–6335

    Article  Google Scholar 

  13. Shen W, Wang C, Xu QJ et al (2015) Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv Energy Mater 5(1):1400982

    Article  Google Scholar 

  14. Liu WH, Wu XL (2016) Work mechanism and research progress of solid polymer electrolytes for lithium-ion batteries. J Mol Sci 32(5):379–395 ((in Chinese))

    Google Scholar 

  15. Wen Y, He K, Zhu YJ et al (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    Article  Google Scholar 

  16. Sheng MH, Zhang F, Ji BF et al (2017) A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv Energy Mater 7(7):1601963

    Article  Google Scholar 

  17. Song TB, Chen H, Xu QJ et al (2018) Black phosphorus stabilizing Na2Ti3O7/C each other with an improved electrochemical property for sodium-ion storage. ACS Appl Mater Interfaces 10(43):37163–37171

    Article  Google Scholar 

  18. Shin H, Zhang JY, Lu W (2019) A comprehensive study of black phosphorus-graphite composite anodes and HEMM synthesis conditions for improved cycle stability. J Electrochem Soc 166(12):A2673–A2682

    Article  Google Scholar 

  19. Fu YQ, Wei QL, Zhang GX et al (2018) Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater 8(13):1703058

    Article  Google Scholar 

  20. Aykol M, Doak JW, Wolverton C (2017) Phosphorus allotropes: stability of black versus red phosphorus re-examined by means of the van der Waals inclusive density functional method. Phys Rev B 95(21):214115

    Article  Google Scholar 

  21. Zeng G, Hu X, Zhou BL et al (2017) Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale 9(38):14722–14729

    Article  Google Scholar 

  22. Li LK, Yu YJ, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9(5):372–377

    Article  Google Scholar 

  23. Zhang YK, Tao HC, Li JH et al (2020) Achieving a high-performance P/C anode through P–O–C bond for sodium ion batteries. Ionics 26(7):3377–3385

    Article  Google Scholar 

  24. Sun J, Lee HW, Pasta M et al (2015) A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10(11):980–985

    Article  Google Scholar 

  25. Vanni M, Serrano-Ruiz M, Telesio F et al (2019) Black phosphorus/palladium nanohybrid: unraveling the nature of P-Pd interaction and application in selective hydrogenation. Chem Mater 31(14):5075–5080

    Article  Google Scholar 

  26. Li L, Zhang D, Deng JP et al (2020) Electrochemical exfoliation of two-dimensional layered black phosphorus and applications. J Energy Chem 49:365–374

    Article  Google Scholar 

  27. Tian Y, Wang HD, Li HN et al (2020) Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. J Mater Chem A 8(9):4647–4676

    Article  Google Scholar 

  28. Ramireddy T, Xing T, Rahman MM et al (2015) Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A 3(10):5572–5584

    Article  Google Scholar 

  29. Liu HW, Tao L, Zhang YQ et al (2017) Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl Mater Interfaces 9(42):36849–36856

    Article  Google Scholar 

  30. Haghighat-Shishavan S, Nazarian-Samani M, Nazarian-Samani M et al (2018) Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. J Mater Chem A 6(21):10121–10134

    Article  Google Scholar 

  31. Fu YJ, Zhang LY, Chen G (2012) Preparation of a carbon nanotube-copper nanoparticle hybrid by chemical reduction for use in the electrochemical sensing of carbohydrates. Carbon 50(7):2563–2570

    Article  Google Scholar 

  32. Song JX, Yu ZX, Gordin ML et al (2015) Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 9(12):11933–11941

    Article  Google Scholar 

  33. Amrute AP, De Bellis J, Felderhoff M et al (2021) Mechanochemical synthesis of catalytic materials. Chem A Eur J 27(23):6819–6847

    Article  Google Scholar 

  34. Hanlon D, Backes C, Doherty E et al (2015) Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun 6:8563

    Article  Google Scholar 

  35. Jeong JH, Lee JS, Roh KC et al (2017) Multimodal porous carbon derived from ionic liquids: correlation between pore sizes and ionic clusters. Nanoscale 9(38):14672–14681

    Article  Google Scholar 

  36. Kim HK, Bak SM, Lee SW et al (2016) Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy Environ Sci 9(4):1270–1281

    Article  Google Scholar 

  37. Shi Y, Yi ZB, Kuang YP et al (2020) Constructing stable covalent bonding in black phosphorus/reduced graphene oxide for lithium ion battery anodes. Chem Commun 56(78):11613–11616

    Article  Google Scholar 

  38. Wang H, Wang L, Wang L et al (2018) Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chemistry 24(52):13897–13902

    Article  Google Scholar 

  39. Zhang YP, Wang LL, Xu H et al (2020) Black phosphorus: 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv Funct Mater 30(12):2070074

    Article  Google Scholar 

  40. Chizari K, Deneuve A, Ersen O et al (2012) Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation. Chemsuschem 5(1):102–108

    Article  Google Scholar 

  41. Palaniselvam T, Goktas M, Anothumakkool B et al (2019) Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater 29(18):1900790

    Article  Google Scholar 

  42. Qiao Y, Ma MY, Liu Y et al (2016) First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J Mater Chem A 4(40):15565–15574

    Article  Google Scholar 

  43. Muñoz-Sandoval E, Cortes-López AJ, Flores-Gómez B et al (2017) Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon 115:409–421

    Article  Google Scholar 

  44. Qian JF, Wu XY, Cao YL et al (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed Engl 52(17):4633–4636

    Article  Google Scholar 

  45. Zhou FC, Ouyang LZ, Liu JW et al (2020) Chemical bonding black phosphorus with TiO2 and carbon toward high-performance lithium storage. J Power Sources 449:227549

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research Program of China (No. 2018YFC0808601). Thanks are due to Sino-Linchem International, Inc. for providing bulk black phosphorus and the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Wei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, L., He, J. & Wei, H. Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries. Trans. Tianjin Univ. 28, 132–143 (2022). https://doi.org/10.1007/s12209-021-00299-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-021-00299-3

Keyword

Navigation