Skip to main content
Log in

Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg–Zn–Y–Gd–Zr alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium-based alloys presented great potential for biodegradable implant materials. However, the poor mechanical properties and high corrosion rate blocked its extensive application. In this study, a new biodegradable Mg–Zn–Y–Gd–Zr alloy was fabricated and extruded. The microstructure, corrosion morphologies and corrosion products film of the as-cast, homogenized and as-extruded alloys were characterized by optical micrographs, scanning electron microscopy, X-ray diffraction and laser scanning confocal microscopy. Moreover, the corrosion mechanisms of the as-cast and as-extruded alloys were proposed, and the influencing factors of corrosion properties were discussed. The electrochemical test, immersion tests and corrosion morphologies demonstrated that the as-extruded alloy exhibited favorable corrosion properties. The as-cast and homogenized alloys displayed localized corrosion mode, and the as-extruded alloy displayed uniform corrosion mode. The Volta potential of the Mg3(Y,Gd)2Zn3 phase relative to Mg matrix was measured by using Kelvin probe force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573

    CAS  Google Scholar 

  2. Argade GR, Panigrahi SK, Mishra RS (2012) Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci 58:145–151

    CAS  Google Scholar 

  3. Hofstetter J, Martinelli E, Pogatscher S, Schmutz P, Povodenkaradeniz E, Weinberg AM (2015) Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater 23:347–353

    CAS  Google Scholar 

  4. Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 6(5):1824–1833

    Google Scholar 

  5. Cai S, Lei T, Li N, Feng F (2012) Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C 32(8):2570–2577

    CAS  Google Scholar 

  6. Rad HRB, Idris MH, Kadir MRA, Farahany S (2012) Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Mater Des 33(1):88–97

    CAS  Google Scholar 

  7. Seong JW, Kim WJ (2015) Development of biodegradable Mg–Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg–Ca phase by high-ratio differential speed rolling. Acta Biomater 11:531–542

    CAS  Google Scholar 

  8. Zhao C, Pan F, Zhang L, Pan H, Song K, Tang A (2017) Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg–Sr alloys. Mater Sci Eng C Mater Biol Appl 70(2):1081–1088

    CAS  Google Scholar 

  9. Wang Y, Tie D, Guan R, Wang N, Shang Y, Cui T (2017) Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg–Sr alloys as potential biodegradable implant materials. J Mech Behav Biomed Mater 77:47–57

    Google Scholar 

  10. Bian D, Zhou W, Liu Y, Li N, Sun Z (2016) Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomater 41:351–360

    CAS  Google Scholar 

  11. Zhang BP, Hou YL, Wang XD, Wang Y, Geng L (2011) Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C 31(8):1667–1673

    CAS  Google Scholar 

  12. Bakhsheshi-Rad HR, Abdul-Kadir MR, Idris MH, Farahany S (2012) Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–Zn alloys. Corros Sci 64(6):184–197

    CAS  Google Scholar 

  13. Brar HS, Wong J, Manuel MV (2012) Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 7(3):87–95

    Google Scholar 

  14. Li Z, Chen M, Li W, Zheng H, You C, Liu D (2017) The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg–Zn–Zr–Sr alloy. J Alloys Compd 702:290–302

    CAS  Google Scholar 

  15. Chen L, Bin Y, Zou W, Wang X, Li W (2016) The influence of Sr on the microstructure, degradation and stress corrosion cracking of the mg alloys Zk40-Sr. J Mech Behav Biomed Mater 66:187–200

    Google Scholar 

  16. Zhang EL, Yin DS, Xu LP, Yang L, Yang K (2009) Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C 29(3):987–993

    CAS  Google Scholar 

  17. Henderson HB, Ramaswamy V, Wilson-Heid AE, Kesler MS, Allen JB, Manuel MV (2018) Mechanical and degradation property improvement in a biocompatible Mg–Ca–Sr alloy by thermomechanical processing. J Mech Behav Biomed Mater 80:285–292

    CAS  Google Scholar 

  18. Berglund IS, Jacobs BY, Allen KD, Kim S, Pozzi A, Allen JB (2016) Peri-implant tissue response and biodegradation performance of a Mg–1.0Ca–0.5Sr alloy in rat tibia. Mater Sci Eng C Mater Biol Appl 62:79–85

    CAS  Google Scholar 

  19. Bornapour M, Celikin M, Pekguleryuz M (2015) Thermal exposure effects on the in vitro degradation and mechanical properties of Mg–Sr and Mg–Ca–Sr biodegradable implant alloys and the role of the microstructure. Mater Sci Eng C 46:16–24

    CAS  Google Scholar 

  20. Tok HY, Hamzah E, Bakhsheshi-Rad HR (2015) The role of bismuth on the microstructure and corrosion behavior of ternary Mg–1.2Ca–xBi alloys for biomedical applications. J Alloys Compd 640:335–346

    CAS  Google Scholar 

  21. Cho DH, Lee BW, Park JY, Cho KM, Park IM (2017) Effect of mn addition on corrosion properties of biodegradable Mg–4Zn–0.5Ca–xMn alloys. J Alloys Compd 695:1166–1174

    CAS  Google Scholar 

  22. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M (2014) Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des 53(1):283–292

    CAS  Google Scholar 

  23. Li Y, Wen C, Mushahary D, Sravanthi R, Harishankar N, Pande G (2012) Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater 8(8):3177–3188

    CAS  Google Scholar 

  24. Willbold E, Gu X, Albert D, Kalla K, Bobe K, Brauneis M (2015) Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 11:554–562

    CAS  Google Scholar 

  25. Liu J, Lin Y, Bian D, Wang M, Lin Z, Chu X (2019) In vitro and in vivo studies of Mg–30Sc alloys with different phase structure for potential usage within bone. Acta Biomater. https://doi.org/10.1016/j.actbio.2019.03.009

  26. Yang L, Hort N, Laipple D, Höche D, Huang Kainer K U (2013) Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation. Acta Biomater 9(10):8475–8487

    CAS  Google Scholar 

  27. Miao H, Hua H, Shi Y, Hua Z, Jia P, Yuan G (2017) Effects of solution treatment before extrusion on the microstructure, mechanical properties and corrosion of Mg–Zn–Gd alloy in vitro. Corros Sci 122:90–99

    CAS  Google Scholar 

  28. Lin G, Chen M, Chen Y, Zhen L, Yun W, Wei L (2018) Preparation and characterization of biodegradable Mg–Zn–Ca/MgO nanocomposites for biomedical applications. Mater Charact 144:120–130

    CAS  Google Scholar 

  29. Zhang J, Li H, Wang W, Huang H, Pei J, Qu H (2018) The degradation and transport mechanism of a Mg–Nd–Zn–Zr stent in rabbit common carotid artery: a 20-month study. Acta Biomater 6(2):626–640

    Google Scholar 

  30. Zhang X, Yuan G, Mao L, Niu J, Fu P, Ding W (2012) Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg–Nd–Zn–Zr alloy. J Mech Behav Biomed Mater 7(1):77–86

    CAS  Google Scholar 

  31. Kubásek J, Vojtěch D (2013) Structural and corrosion characterization of biodegradable Mg–RE (RE = Gd, Y, Nd) alloys. Trans Nonferrous Met Soc China 23(5):1215–1225

    Google Scholar 

  32. Liu X, Shan D, Song Y (2017) Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy. J Magnes Alloys 5(1):26–34

    Google Scholar 

  33. Chen J, Tan L, Yu X (2018) Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg–2Zn–xGd–0.5Zr alloys. J Mater Sci Technol 35:503–511. https://doi.org/10.1016/j.jmst.2018.10.022

    Article  Google Scholar 

  34. Song Y, Han EH, Shan D (2012) The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros Sci 65:322–330

    CAS  Google Scholar 

  35. Yang Y, Zhang K, Li XG (2015) Microstructure and phase transformation of as-cast and annealed Mg–4Zn–1Y alloy containing quasi-crystal phase. Rare Met 34(4):239–244

    CAS  Google Scholar 

  36. Liu K, Wang X, Du W (2013) Development of extraordinary high-strength-toughness Mg alloy via combined processes of repeated plastic working and hot extrusion. Mater Sc Eng 573:127–131

    CAS  Google Scholar 

  37. Wang Q, Liu K, Wang Z (2014) Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys containing W-phase. J Alloys Compd 602:32–39

    CAS  Google Scholar 

  38. Lin X, Tan LL, Zhang Q, Yang K, Hu ZQ, Qiu JH (2013) The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomater 9(10):8631–8642

    CAS  Google Scholar 

  39. Nace A, ASTMG31-12a (2012) Standard guide for laboratory immersion corrosion testing of metals. ASTM International, West Conshohocken, p 1–8

    Google Scholar 

  40. Robson JD, Henry DT, Davis B (2009) Particle effects on recrystallization in magnesium–manganese alloys: particle-stimulated nucleation. Acta Mater 57(9):2739–2747

    CAS  Google Scholar 

  41. Shi F, Wang CQ, Zhang ZM (2015) Microstructures, corrosion and mechanical properties of as-cast Mg–Zn–Y–(Gd) alloys. Trans Nonferrous Met Soc China 25(7):2172–2180

    CAS  Google Scholar 

  42. Zhang Z, Xuan L, Wang Z, Le Q, Hu W, Lei B (2015) Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater Des 88:915–923

    CAS  Google Scholar 

  43. Hui F, Liu S, Yong D, Lei T, Zeng R, Yuan T (2017) Effect of the second phases on corrosion behavior of the Mg–Al–Zn alloys. J Alloys Compd 695:2330–2338

    Google Scholar 

  44. Xu R, Shen Y, Zheng J, Wen Q, Li Z, Yang X (2017) Effects of one-step hydrothermal treatment on the surface morphology and corrosion resistance of Zk60 magnesium alloy. Surf Coat Technol 309:490–496

    CAS  Google Scholar 

  45. Zhang X, Yuan G, Mao L, Niu J, Ding W (2012) Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Mater Lett 66(1):209–211

    CAS  Google Scholar 

  46. Gui Z, Kang Z, Li Y (2016) Mechanical and corrosion properties of Mg–Gd–Zn–Zr–Mn biodegradable alloy by hot extrusion. J Alloys Compd 685:222–230

    CAS  Google Scholar 

  47. Yao H, Wen J, Xiong Y, Lu Y, Cao W (2017) Extrusion temperature impacts on biometallic Mg–2.0Zn–0.5Zr–3.0Gd (wt%) solid-solution alloy. J Alloys Compd 739:468–480

    Google Scholar 

  48. Tao L, Yong H, Jianhua W, Jixue Z, Shouqiu T, Yuansheng Y (2018) Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr alloy. J Mater Sci 53:14075–14086. https://doi.org/10.1007/s10853-018-2626-4

    Article  CAS  Google Scholar 

  49. Zhang Y, Li JX, Li JY (2018) Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg–Zn–Mn–xNd in Kokubo’s solution. J Alloys Compd J 730:458–470

    CAS  Google Scholar 

  50. Zhang Y, Li JX, Li JY (2017) Effects of calcium addition on phase characteristics and corrosion behaviors of Mg–2Zn–0.2Mn–xCa in simulated body fluid. J Alloys Compd 728:37–46

    CAS  Google Scholar 

  51. Ralston KD, Fabijanic D, Birbilis N (2011) Effect of grain size on corrosion of high purity aluminium. Electrochim Acta 56(4):1729–1736

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the financial support of the National Key Research and Development Program of China (2018YFB0704102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Li.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, J., Qi, M. et al. Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg–Zn–Y–Gd–Zr alloy. J Mater Sci 55, 1231–1245 (2020). https://doi.org/10.1007/s10853-019-03978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03978-8

Navigation