Skip to main content
Log in

Enhancing the performance of perovskite solar cells via interface modification

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interface modification is an effective strategy to improve the performance of perovskite solar cells (PSCs). In this work, edible materials like glycerol and choline chloride were used to modify the surface of hole transport layer (HTL) NiOx. CH3NH3PbI3 (MAPbI3) film fabricated on the modified NiOx has a smoother surface and more uniform grains. It enables an improvement in short-circuit current density (JSC) of PSC from 17.77 ± 0.18 to 20.35 ± 0.36 mA cm−2, leading to an enhancement of power conversion efficiency from 13.37 to 15.25%. The work mechanism of glycerol and choline chloride modification was discussed. Our work provides an efficient and environmentally friendly choice for interface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arora N, Dar MI, Hinderhofer A et al (2017) Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358:768–771. https://doi.org/10.1126/science.aam5655

    Article  CAS  Google Scholar 

  2. Luo DY, Zhao LC, Wu J et al (2017) Dual‐source precursor approach for highly efficient inverted planar heterojunction perovskite solar cells. Adv Mater 29:1604758. https://doi.org/10.1002/adma.201604758

    Article  CAS  Google Scholar 

  3. Stranks SD, Eperon GE, Grancini G et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344. https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  4. Nie WY, Tsai HH, Asadpour R et al (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525. https://doi.org/10.1126/science.aaa0472

    Article  CAS  Google Scholar 

  5. Zhang F, Shi WD, Luo JS et al (2017) Isomer‐pure bis‐PCBM‐assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Adv Mater 29:1606806. https://doi.org/10.1002/adma.201606806

    Article  CAS  Google Scholar 

  6. Yang D, Yang RX, Ren XD et al (2016) Hysteresis‐suppressed high‐efficiency flexible perovskite solar cells using solid‐state ionic‐liquids for effective electron transport. Adv Mater 28:5206–5213. https://doi.org/10.1002/adma.201600446

    Article  CAS  Google Scholar 

  7. Cao J, Wu BH, Chen RH et al (2018) Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv Mater 30:1705596. https://doi.org/10.1002/adma.201705596

    Article  CAS  Google Scholar 

  8. Zhao WG, Yao Z, Yu FY, Yang D, Liu SZ (2018) Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Adv Sci 5:1700131. https://doi.org/10.1002/advs.201700131

    Article  CAS  Google Scholar 

  9. Abate A, Correa-Baena JP, Saliba M, Su’ait MS, Bella F (2018) Perovskite solar cells: from the laboratory to the assembly line. Chem Eur J 24:3083–3100. https://doi.org/10.1002/chem.201881362

    Article  CAS  Google Scholar 

  10. Bella F, Renzi P, Cavallo C, Gerbaldi C (2018) Caesium for perovskite solar cells: an overview. Chem Eur J 24:12183–12205. https://doi.org/10.1002/chem.201884767

    Article  CAS  Google Scholar 

  11. Bush KA, Palmstrom AF, Yu ZJ et al (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009. https://doi.org/10.1038/nenergy.2017.9

    Article  CAS  Google Scholar 

  12. Yang WS, Park B-W, Jung EH et al (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379. https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  13. Huang X, Bi WT, Jia PC et al (2019) Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Org Electron 67:101–108. https://doi.org/10.1016/j.orgel.2019.01.016

    Article  CAS  Google Scholar 

  14. Wu SF, Li Z, Zhang J, Liu TT, Zhu ZL, Jen AKY (2019) Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem Commun 55:4315–4318. https://doi.org/10.1039/C9CC00016J

    Article  CAS  Google Scholar 

  15. Galagan Y, Di Giacomo F, Gorter H et al (2018) Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater 8:1801935. https://doi.org/10.1002/aenm.201801935

    Article  CAS  Google Scholar 

  16. Wang FF, Cao YZ, Chen C et al (2018) Materials toward the upscaling of perovskite solar cells: progress, challenges, and strategies. Adv Funct Mater 28:1803753. https://doi.org/10.1002/adfm.201803753

    Article  CAS  Google Scholar 

  17. Turkevych I, Kazaoui S, Belich NA et al (2019) Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics. Nat Nanotechnol 14:57–63. https://doi.org/10.29363/nanoge.abxpvperopto.2018.073

    Article  CAS  Google Scholar 

  18. Vega-Garita V, Ramirez-Elizondo L, Narayan N, Bauer P (2019) Integrating a photovoltaic storage system in one device: a critical review. Prog Photovolt 27:346–370. https://doi.org/10.1002/pip.3093

    Article  Google Scholar 

  19. Liu ZY, Zhong Y, Sun B et al (2017) Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Appl Mater Interfaces 9:22361–22368. https://doi.org/10.1021/acsami.7b01471

    Article  CAS  Google Scholar 

  20. Wang YF, Zhang J, Chen SH, Zhang HY, Li LG, Fu ZY (2018) Surface passivation with nitrogen-doped carbon dots for improved perovskite solar cell performance. J Mater Sci 53:9180–9190. https://doi.org/10.1007/s10853-018-2190-y

    Article  CAS  Google Scholar 

  21. Christians JA, Schulz P, Tinkham JS et al (2018) Tailored interfaces of unencapsulated perovskite solar cells for > 1000 hour operational stability. Nat Energy 3:68–74. https://doi.org/10.1038/s41560-017-0067-y

    Article  CAS  Google Scholar 

  22. Kim JH, Liang PW, Williams ST et al (2015) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27:695–701. https://doi.org/10.1002/adma.201404189

    Article  CAS  Google Scholar 

  23. Zhang H, Cheng JQ, Lin F et al (2016) Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10:1503–1511. https://doi.org/10.1021/acsnano.5b07043

    Article  CAS  Google Scholar 

  24. Du YW, Xin CG, Huang W et al (2018) Polymeric surface modification of NiOx-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain Chem Eng 6:16806–16812. https://doi.org/10.1021/acssuschemeng.8b04078

    Article  CAS  Google Scholar 

  25. Lee JH, Noh YW, Jin IS, Park SH, Jung JW (2019) A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. J Power Sources 412:425–432. https://doi.org/10.1016/j.jpowsour.2018.11.081

    Article  CAS  Google Scholar 

  26. Teo S, Guo Z, Xu Z et al (2019) The role of lanthanum in a nickel oxide-based inverted perovskite solar cell for efficiency and stability improvement. ChemSusChem 12:518–526. https://doi.org/10.1002/cssc.201802231

    Article  CAS  Google Scholar 

  27. Dequilettes DW, Vorpahl SM, Stranks SD et al (2015) Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348:683–686. https://doi.org/10.1126/science.aaa5333

    Article  CAS  Google Scholar 

  28. Shi D, Adinolfi V, Comin R et al (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522. https://doi.org/10.1126/science.aaa2725

    Article  CAS  Google Scholar 

  29. Shao YH, Xiao ZG, Bi C, Yuan YB, Huang JS (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:5784. https://doi.org/10.1038/ncomms6784

    Article  CAS  Google Scholar 

  30. Li X, Zhao XY, Hao F et al (2018) Bifacial modified charge transport materials for highly efficient and stable inverted perovskite solar cells. ACS Appl Mater Interfaces 10:17861–17870. https://doi.org/10.1021/acsami.8b02035

    Article  CAS  Google Scholar 

  31. Wang Q, Chueh CC, Zhao T et al (2017) Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10:3794–3803. https://doi.org/10.1002/cssc.201701262

    Article  CAS  Google Scholar 

  32. Yin XT, Chen P, Que MD et al (2016) Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10:3630–3636. https://doi.org/10.1021/acsnano.5b08135

    Article  CAS  Google Scholar 

  33. Zhou X, Zhang Y, Kong W et al (2018) Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating. J Mater Chem A 6:3012–3021. https://doi.org/10.1039/C7TA08947C

    Article  CAS  Google Scholar 

  34. Yang D, Yang R, Zhang J, Yang Z, Liu S, Li C (2015) High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci 8:3208–3214. https://doi.org/10.1039/C5EE02155C

    Article  CAS  Google Scholar 

  35. Ahmadian-Yazdi MR, Eslamian M (2018) Toward scale-up of perovskite solar cells: annealing-free perovskite layer by low-cost ultrasonic substrate vibration of wet films. Mater Today Commun 14:151–159. https://doi.org/10.1016/j.mtcomm.2018.01.006

    Article  CAS  Google Scholar 

  36. Xie L, Hwang H, Kim M, Kim K (2017) Ternary solvent for CH3NH3PbI3 perovskite films with uniform domain size. Phys Chem Chem Phys 19:1143–1150. https://doi.org/10.1039/c6cp06709c

    Article  CAS  Google Scholar 

  37. Zhai YQ, Zhang Z, Huo GY, Ren MH (2011) Microwave synthesis, characterization, magnetic and electrical properties of double perovskite Sr2FeMoO6. Rare Metal Mater Eng 40:906. https://doi.org/10.3724/SP.J.1011.2011.00211

    Article  CAS  Google Scholar 

  38. Chang CY, Chu CY, Huang YC et al (2015) Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces 7:4955–4961. https://doi.org/10.1021/acsami.5b00052

    Article  CAS  Google Scholar 

  39. Fung DDS, Qiao LF, Choy WCH et al (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J Mater Chem 21:16349–16356. https://doi.org/10.1039/c1jm12820e

    Article  CAS  Google Scholar 

  40. Ge QQ, Ding J, Liu J et al (2016) Promoting crystalline grain growth and healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells. J Mater Chem A 4:13458–13467. https://doi.org/10.1039/c6ta05288f

    Article  CAS  Google Scholar 

  41. Hu ZJ, Chen D, Yang P et al (2018) Sol–gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Appl Surf Sci 441:258–264. https://doi.org/10.1016/j.apsusc.2018.01.236

    Article  CAS  Google Scholar 

  42. Xue QF, Bai Y, Liu MY et al (2017) Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor. Adv Energy Mater 7:1602333. https://doi.org/10.1002/aenm.201602333

    Article  CAS  Google Scholar 

  43. Bi C, Wang Q, Shao YC, Yuan YB, Xiao ZG, Huang JS (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6:7747. https://doi.org/10.1038/ncomms8747

    Article  CAS  Google Scholar 

  44. Lee H, Rhee S, Kim J, Lee C, Kim H (2016) Surface coverage enhancement of a mixed halide perovskite film by using an UV–ozone treatment. J Korean Phys Soc 69:406–411. https://doi.org/10.3938/jkps.69.406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Project was funded by NSFC (Grant No. 51603072), and Jiangsu Shuangchuang Innovation Group Project (Grant No. 090300316001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanyi Tan or Yong Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Q., Deng, Y., Cui, D. et al. Enhancing the performance of perovskite solar cells via interface modification. J Mater Sci 54, 14134–14142 (2019). https://doi.org/10.1007/s10853-019-03898-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03898-7

Navigation