Skip to main content
Log in

Co3O4 polyhedrons with enhanced electric conductivity as efficient water oxidation electrocatalysts in alkaline medium

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is a great challenge to develop Co3O4-based electrocatalysts of excellent performance for oxygen evolution reaction, because of its poor electrical conductivity. In this paper, we have prepared pristine Co3O4 (P-Co3O4) and Co3O4-C polyhedrons via two different calcination strategies. Then we have also displayed a simple and green reduction method to synthesize reduced Co3O4 (R-Co3O4) polyhedron with abundant surface oxygen vacancies. Oxygen vacancies and the doping of carbon species can enhance conductivity of electrocatalysts, thus, improving their electrocatalytic activities obviously. R-Co3O4 and Co3O4-C polyhedrons show lower overpotentials of 380 and 420 mV, respectively, compared to P-Co3O4 polyhedron (520 mV) at the current density of 10 mA cm−2 in 1 M KOH solution (pH 13.7). And they also have smaller Tafel slopes of 86 and 78 mV dec−1 than that of P-Co3O4 polyhedron (93 mV dec−1), respectively. The integrated strategy reported here provides the way to design high-performance electrocatalysts for water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Timothy RC, Dilek KD, Steven YR, Yogesh S, Thomas ST, Daniel GN (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    Article  Google Scholar 

  2. Jin S, Kevin JM, Hubert AG, John BG, Yang SH (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  Google Scholar 

  3. Zhuang ZB, Sheng WC, Yan YS (2014) Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv Mater 26:3950–3955

    Article  Google Scholar 

  4. Li TT, Qian JJ, Zheng YQ (2016) Facile synthesis of porous CuO polyhedron from Cu-based metal organic framework (MOF-199) for electrocatalytic water oxidation. RSC Adv 6:77358–77365

    Article  Google Scholar 

  5. Adriano A, Martin P (2016) Templated electrochemical fabrication of hollow molybdenum sulfide microstructures and nanostructures with catalytic properties for hydrogen production. ACS Catal 6:3985–3993

    Article  Google Scholar 

  6. Hu WH, Han GQ, Liu YR, Dong B, Chai YM, Liu YQ, Liu CG (2015) Ultrathin MoS2-coated carbon nanospheres as highly efficient electrocatalyts for hydrogen evolution reaction. Int J Hydrog Energy 40:6552–6558

    Article  Google Scholar 

  7. Ioannis K, Serhiy C, Aleksandar RZ, Karl JJM (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53:102–121

    Article  Google Scholar 

  8. Wang JH, Cui W, Liu Q, Xing ZC, Abdullah MA, Sun XP (2016) Recent progress in Cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215–230

    Article  Google Scholar 

  9. Michaela SB, Matthew GK, Lena T, Adam MS, Shannon WB (2015) Cobalt–Iron (Oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137:3638–3648

    Article  Google Scholar 

  10. Zhu YL, Zhou W, Chen ZG, Chen YB, Su C, Moses OT, Shao ZP (2015) SrNb0.1Co0.7Fe0.2O3−δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew Chem 127:3969–3973

    Article  Google Scholar 

  11. Chen S, Duan JJ, Bian PJ, Tang YH, Zheng RK, Qiao SZ (2015) Three-dimensional smart catalyst electrode for oxygen evolution reaction. Adv Energy Mater 5:1500936

    Article  Google Scholar 

  12. Zhou J, Dou YB, Zhou A, Guo RM, Zhao MJ, Li JR (2017) MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv Energy Mater 7:1602643

    Article  Google Scholar 

  13. Sangbaek P, Kim DH, Lee CW, Seo SD, Kim HJ, Han HS, Hong KS, Kim DW (2014) Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res 7:144–153

    Article  Google Scholar 

  14. Af F, Troy KT, Rachel LC, Erwin MS, Th D, Nigel DB, Frank EO (2011) Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133:7264–7267

    Article  Google Scholar 

  15. Qu YQ, Duan XF (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580

    Article  Google Scholar 

  16. Bai CD, Wei SS, Deng DG, Lin XD, Zheng MS, Dong QF (2017) A nitrogen-doped nano carbon dodecahedron with Co@Co3O4 implants as a bi-functional electrocatalyst for efficient overall water splitting. J Mater Chem A 5:9533–9536

    Article  Google Scholar 

  17. Torsten B, John W, Sarah HT, Bruce D (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 4:146–151

    Google Scholar 

  18. Deng XH, Harun T (2014) Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal 4:3701–3714

    Article  Google Scholar 

  19. Zhu XL, Tang C, Wang HF, Zhang Q, Yang CH, Wei F (2015) Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. J Mater Chem A 5:24540–24546

    Article  Google Scholar 

  20. Yuan CZ, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  Google Scholar 

  21. Xia XH, Tu JP, Zhang YQ, Wang XL, Gu CD, Zhao XB, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6:5531–5538

    Article  Google Scholar 

  22. Han GQ, Liu YR, Hu WH, Dong B, Li X, Shang X, Chai YM, Liu YQ, Liu CG (2015) Three dimensional nickel oxides/nickel structure by in situ electro-oxidation of nickel foam as robust electrocatalyst for oxygen evolution reaction. Appl Surf Sci 359:172–176

    Article  Google Scholar 

  23. Katie LP, Sang WP, Yelena G, Lee H, Thomas FJ, Stacey FB (2012) Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv Energy Mater 2:1269–1277

    Article  Google Scholar 

  24. Lu ZY, Xu WW, Zhu W, Yang Q, Lei XD, Liu JF, Li YP, Sun XM, Duan X (2014) Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun 50:6479–6482

    Article  Google Scholar 

  25. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072

    Article  Google Scholar 

  26. Li XZ, Fang YY, Lin XQ, Tian M, An XC, Fu Y, Li R, Jin J, Ma JT (2015) MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. J Mater Chem A 3:17392–17402

    Article  Google Scholar 

  27. Yuan CZ, Yang L, Hou LR, Shen LF, Zhang XG, Lou WX (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887

    Article  Google Scholar 

  28. Song ZX, Cheng NC, Andrew L, Sun XL (2016) Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6:116

    Article  Google Scholar 

  29. Ma TY, Dai S, Mietek J, Qiao SZ (2014) Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925–13931

    Article  Google Scholar 

  30. Zhang L, Wu HB, Srinivasan M, Hng HH, Lou XW (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their Lithium storage properties. J Am Chem Soc 134:17388–17391

    Article  Google Scholar 

  31. Yang L, Gao MG, Dai B, Guo XH, Liu ZY, Peng BH (2016) An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal–organic framework. Electrochim Acta 191:813–820

    Article  Google Scholar 

  32. Dong QC, Wang Q, Dai ZY, Qiu HJ, Dong XC (2016) MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces 8:26902–26907

    Article  Google Scholar 

  33. Hu H, Zhang JT, Guan BY, Lou XW (2016) Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient Lithium storage. Angew Chem 55:9514–9518

    Article  Google Scholar 

  34. Chen YZ, Wang CM, Wu ZY, Xiong YJ, Xu Q, Yu SH, Jiang HL (2015) From bimetallic metal–organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27:5010–5016

    Article  Google Scholar 

  35. Rahul RS, Tang J, Yuichiro K, Teruyuki N, Kim JH, Yusuke Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9:6288–6296

    Article  Google Scholar 

  36. Dong D, Liu Y, Li JH (2016) Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen. Part Part Syst Charact 33:887–895

    Article  Google Scholar 

  37. Zhu YP, Ma TY, Mietek J, Qiao SZ (2017) Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew Chem 56:1324–1328

    Article  Google Scholar 

  38. Wang YC, Zhou T, Jiang K, Da PM, Peng Z, Tang J, Kong B, Cai WB, Yang ZQ, Zheng GF (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4:1400696

    Article  Google Scholar 

  39. Xu L, Jiang QQ, Xiao ZH, Li XY, Huo J, Wang SY, Dai LM (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem 128:5363–5367

    Article  Google Scholar 

  40. Liu YR, Han GQ, Li X, Dong B, Shang X, Hu WH, Chai YM, Liu YQ, Liu CG (2016) A facile synthesis of reduced Co3O4 nanoparticles with enhanced Electrocatalytic activity for oxygen evolution. Int J Hydrog Energy 41:12976–12982

    Article  Google Scholar 

  41. Zhang C, Xiao J, Lv XL, Qian LH, Yuan SL, Wang S, Lei PX (2016) Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J Mater Chem A 4:16516–16523

    Article  Google Scholar 

  42. Gu D, Ferdi S (2014) Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev 43:313–344

    Article  Google Scholar 

  43. Li BJ, Cao HQ, Shao J, Li GQ, Qu MZ, Yin G (2011) Co3O4@graphene composites as anode materials for high-performance Lithium ion batteries. Inorg Chem 50:1628–1632

    Article  Google Scholar 

  44. Harun T, Liu Y, Claudia W, Ferdi S (2008) Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. J Am Chem Soc 130:14108–14110

    Article  Google Scholar 

  45. Li J, Tang SB, Lu L, Zeng HC (2007) Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J Am Chem Soc 129:9401–9409

    Article  Google Scholar 

  46. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Tom R, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  Google Scholar 

  47. Liu Q, Wang LC, Chen M, Cao Y, He HY, Fan KN (2009) Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J Catal 263:104–113

    Article  Google Scholar 

  48. Jiao QZ, Fu M, You C, Zhao Y, Li HS (2012) Preparation of hollow Co3O4 microspheres and their ethanol sensing properties. Inorg Chem 51:11513–11520

    Article  Google Scholar 

  49. Tan YL, Gao QM, Yang CX, Yang K, Tian WQ, Zhu LH (2015) One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior Lithium ion storage performance. Sci Rep 5:12382

    Article  Google Scholar 

  50. Lou Y, Ma J, Cao XM, Wang L, Dai QG, Zhao ZY, Cai YF, Zhan WC, Guo YL, Hu P, Lu GZ, Guo Y (2015) Promoting effects of In2O3 on Co3O4 for CO Oxidation: tuning O2 activation and CO adsorption strength simultaneously. ACS Catal 4:4143–4152

    Article  Google Scholar 

  51. Li LD, Yan JQ, Wang T, Zhao ZJ, Zhang J, Gong JL, Guan NJ (2015) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881

    Article  Google Scholar 

  52. Alberto N, Mattia A, Saveria S, Marcello M, Filippo F, Serena C, Claudia LB, Rinaldo P, Vladimiro DS (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  Google Scholar 

  53. Charles CLM, Jung SH, Jonas CP, Thomas FJ (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    Article  Google Scholar 

  54. Wu J, Xue Y, Yan X, Yan WS, Cheng QM, Xie Y (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5:521–530

    Article  Google Scholar 

  55. Xu WW, Xie WW, Wang Y (2017) Co3O4−x-carbon@Fe2−yCoyO3 heterostructural hollow polyhedrons for the oxygen evolution reaction. ACS Appl Mater Interfaces 9:28642–28649

    Article  Google Scholar 

  56. Michal B, Mónica GM, Aleksandra V, Jens KN, Alexis TB (2013) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc 135:13521–13530

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Ningbo (Grant No. 2016A610069), National Natural Science Foundation of China (Grant No. 21603110) and K. C. Wong Magna Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qing Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 23324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SY., Li, TT., Zhu, HL. et al. Co3O4 polyhedrons with enhanced electric conductivity as efficient water oxidation electrocatalysts in alkaline medium. J Mater Sci 53, 4323–4333 (2018). https://doi.org/10.1007/s10853-017-1855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1855-2

Keywords

Navigation