Skip to main content
Log in

Toughening mechanisms of low transformation temperature deposited metals with martensite–austenite dual phases

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four groups of low transformation temperature (LTT) deposited metals with different Ni contents were prepared, and their microstructures were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and electron backscattered diffraction techniques. The relationship between the microstructures of the mixed martensite–retained austenite (RA) phases and their impact toughness were investigated; it was found that the impact toughness of the LTT deposited metals increased with increasing volume fraction of RA. In particular, its magnitude was higher for the specimens containing the lath martensite, interlath RA, and intercellular RA phases than for those composed of the lath martensite and interlath RA. The toughness of the lath martensite–RA mixed microstructure was primarily determined by the presence of the soft RA phase (containing film interlath RA and stringer intercellular RA), while lath martensite phase characterized by a high density of tangled dislocations and relatively small amount of twinned substructures resulted in the embrittlement of the LTT deposited metals. The dislocation absorption by the retained austenite and transformation-induced plasticity (TRIP) effects of RA were found to be main reasons for the improvement in materials toughness during crack initiation stage. The subsequent crack propagation proceeds via the TRIP and the transformation-induced crack termination mechanisms; it is also significantly affected by the increased fraction of martensite/RA boundaries. The optimization of the RA fraction in the martensite–RA dual structure is a potentially effective method for the toughness enhancement of the LTT deposited metals containing martensite–RA dual phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Gadallah R, Tsutsumi S, Hiraoka K, Murakawa H (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253

    Article  Google Scholar 

  2. Ooi SW, Garnham JE, Ramjaun TI (2014) Review: low transformation temperature weld filler for tensile residual stress reduction. Mater Des 56:773–781

    Article  Google Scholar 

  3. Harati E, Karlsson L, Svensson L-E, Dalaei K (2017) Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels. Int J Fatigue 97:39–47

    Article  Google Scholar 

  4. Kromm A, van der Mee V, Kannengiesser T, Kalfsbeek B (2014) Properties and weldability of modified low transformation temperature filler wires. Weld World 59(3):413–425

    Article  Google Scholar 

  5. Alghamdi T, Liu S (2014) Low transformation temperature welding consumables for residual stress management: a numerical model for the prediction of phase transformation-induced compressive residual stresses. Weld J 93(12):458–471

    Google Scholar 

  6. Kromm A, Dixneit J, Kannengiesser T (2014) Residual stress engineering by low transformation temperature alloys—state of the art and recent developments. Weld World 58(5):729–741

    Article  Google Scholar 

  7. Pilhagen J, Sandström R (2014) Influence of nickel on the toughness of lean duplex stainless steel welds. Mater Sci Eng A 602:49–57

    Article  Google Scholar 

  8. Chen X, Fang Y, Li P, Yu Z, Wu X, Li D (2015) Microstructure, residual stress and mechanical properties of a high strength steel weld using low transformation temperature welding wires. Mater Des 1980–2015(65):1214–1221

    Article  Google Scholar 

  9. Zenitani S, Hayakawa N, Yamamoto J, Hiraoka K, Morikage Y, Kubo T, Yasuda K, Amano K (2013) Development of new low transformation temperature welding consumable to prevent cold cracking in high strength steel welds. Sci Technol Weld Join 12(6):516–522

    Article  Google Scholar 

  10. Altenkirch J, Gibmeier J, Kromm A, Kannengiesser T, Nitschke-Pagel T, Hofmann M (2011) In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater Sci Eng A 528(16–17):5566–5575

    Article  Google Scholar 

  11. Qiu H, Wang LN, Zuo H, Arakane G, Hiraoka K (2013) Optimization of the content of retained austenite in Fe–(0.01–0.045)C–14Cr–(4–9)Ni weld metals for strength–ductility balance. Mater Sci Eng A 565:102–111

    Article  Google Scholar 

  12. Nakagawa H, Miyazaki T (1999) Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel. J Mater Sci 34(16):3901–3908. https://doi.org/10.1023/A:1004626907367

    Article  Google Scholar 

  13. Wang MM, Tasan CC, Ponge D, Kostka A, Raabe D (2014) Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater 79:268–281

    Article  Google Scholar 

  14. Peng LG, Liu WJ, Liu XH, Zhi Y (2015) Experimental study on the effect of retained austenite on the impact toughness of a low-carbon martensite steel. Adv Mater Res 1095:119–123

    Article  Google Scholar 

  15. Koyama M, Zhang Z, Wang M, Ponge D, Raabe D, Tsuzaki K, Noguchi H, Tasan CC (2017) Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355(6329):1055–1057

    Article  Google Scholar 

  16. Kobayashi J, Ina D, Nakajima Y, Sugimoto KI (2013) Effects of microalloying on the impact toughness of ultrahigh-strength TRIP-aided martensitic steels. Metall Mater Trans A 44(11):5006–5017

    Article  Google Scholar 

  17. Zhang K, Zhang M, Guo Z, Chen N, Rong Y (2011) A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater Sci Eng A 528(29):8486–8491

    Article  Google Scholar 

  18. Zhang S, Wang P, Li D, Li Y (2015) Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater Des 84:385–394

    Article  Google Scholar 

  19. Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882

    Article  Google Scholar 

  20. Nedjad SH, Gharabagh MRM (2013) Dislocation structure and crystallite size distribution in lath marten. Int J Mater Res 99(11):1248–1255

    Article  Google Scholar 

  21. Kennett SC (2014) Strengthening and toughening mechanisms in low-c microalloyed martensitic steel as influenced by austenite conditioning. Dissertations & Theses—Gradworks

  22. Ungár T, Borbély A (1996) The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175

    Article  Google Scholar 

  23. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7(1):59–60

    Article  Google Scholar 

  24. Schino AD, Mecozzi MG, Barteri M, Kenny JM (2000) Solidification mode and residual ferrite in low-Ni austenitic stainless steels. J Mater Sci 35(2):375–380. https://doi.org/10.1023/A:1004774130483

    Article  Google Scholar 

  25. Suutala N (1982) Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. Metall Trans A 13(12):2121–2130

    Article  Google Scholar 

  26. Song YY, Ping DH, Yin FX, Li XY, Li YY (2010) Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Sci Eng A 527(3):614–618

    Article  Google Scholar 

  27. Kinney CC, Pytlewski KR, Khachaturyan AG, Morris JW Jr (2014) The microstructure of lath martensite in quenched 9Ni steel. Acta Mater 69(5):372–385

    Article  Google Scholar 

  28. Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539(9):271–279

    Article  Google Scholar 

  29. Karlsen M, Hjelen J, Grong Ø, Rørvik G, Chiron R, Schubert U, Nilsen E (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in supermartensitic stainless steels. Mater Sci Technol 24(1):64–72

    Article  Google Scholar 

  30. Chae D, Koss DA (2004) Damage accumulation and failure of HSLA-100 steel. Mater Sci Eng A 366(2):299–309

    Article  Google Scholar 

  31. Das A, Tarafder S (2009) Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. Int J Plast 25(11):2222–2247

    Article  Google Scholar 

  32. Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539:271–279

    Article  Google Scholar 

  33. Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC (2016) Multiple mechanisms of lath martensite plasticity. Acta Mater 121:202–214

    Article  Google Scholar 

  34. Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng A s 273–275(99):40–57

    Article  Google Scholar 

  35. Wang C, Wang M, Shi J, Hui W, Dong H (2008) Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr Mater 58(6):492–495

    Article  Google Scholar 

  36. Pineau AG, Pelloux RM (1974) Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels. Metall Trans 5(5):1103–1112

    Article  Google Scholar 

  37. Umemoto M, Yoshitake E, Tamura I (1983) The morphology of martensite in Fe–C, Fe–Ni–C and Fe–Cr–C alloys. J Mater Sci 18(10):2893–2904. https://doi.org/10.1007/BF00700770

    Article  Google Scholar 

  38. Macek K, Lukáš P, Janovec J, Mikula P, Strunz P, Vrána M, Zaffagnini M (1996) Austenite content and dislocation density in electron-beam welds of a stainless maraging steel. Mater Sci Eng A 208(1):131–138

    Article  Google Scholar 

  39. Zikry MA (2009) Dislocation density crystalline plasticity modeling of lath martensitic microstructures in steel alloys. Philos Mag 89(33):3087–3109

    Article  Google Scholar 

  40. Kennett SC, Krauss G, Findley KO (2015) Prior austenite grain size and tempering effects on the dislocation density of low-C Nb–Ti microalloyed lath martensite. Scr Mater 107:123–126

    Article  Google Scholar 

  41. Nedjad SH, Gharabagh MRM (2008) Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis. Int J Mater Res 99(11):1248–1255

    Article  Google Scholar 

  42. Michiuchi M, Nambu S, Ishimoto Y, Inoue J, Koseki T (2009) Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater 57(18):5283–5291

    Article  Google Scholar 

  43. Zhou T, Yu H, Wang S (2016) Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism. Mater Sci Eng A 658:150–158

    Article  Google Scholar 

  44. Furuhara T (2010) Key factors in grain refinement of martensite and bainite. Mater Sci Forum 638:3044–3049

    Article  Google Scholar 

  45. Hwang B, Chang GL, Kim SJ (2011) Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels. Metall Mater Trans A 42(3):717–728

    Article  Google Scholar 

  46. Morito S, Yoshida H, Maki T, Huang X (2006) Effect of block size on the strength of lath martensite in low carbon steels. Mater Sci Eng A 438–440(1):237–240

    Article  Google Scholar 

  47. Shibata A, Nagoshi T, Sone M, Morito S, Higo Y (2010) Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater Sci Eng A 527(29–30):7538–7544

    Article  Google Scholar 

  48. Morris JW Jr, Kinney CC, Pytlewski KR, Adachi Y (2013) Microstructure and cleavage in lath martensitic steels. Sci Technol Adv Mater 14(1):014208

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 51774213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjie Di.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Wang, D., Di, X. et al. Toughening mechanisms of low transformation temperature deposited metals with martensite–austenite dual phases. J Mater Sci 53, 3720–3734 (2018). https://doi.org/10.1007/s10853-017-1766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1766-2

Keywords

Navigation