Skip to main content
Log in

Crosslinking of poly(vinyl alcohol) nanofibres with polycarboxylic acids: biocompatibility with human skin keratinocyte cells

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, poly(vinyl alcohol) nanofibres were produced and evaluated for wound dressing applications. However, the solubility of the poly(vinyl alcohol) matrix in the aqueous medium generally limits its applications. To overcome this problem, 1,2,3,4 butanetetracarboxylic acid (BTCA) and citric acid (CA) were used as crosslinking agents. Successful bead-free nanofibres were produced, and they both preserved their fibrous structure after water treatment. The mean fibre diameters of polycarboxylic acid crosslinked nanofibres were lower compared to pure PVA nanofibres. Although the morphology of BTCA and CA crosslinked nanofibres was similar, the swelling degree of PVA/CA was found to be higher. Furthermore, toxicity and keratinocyte cell proliferation performance of produced PVA/BTCA and PVA/CA nanofibres indicated that these nanofibrous materials could be used in wound dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  Google Scholar 

  2. Green RA, Baek S, Poole-Warren LA, Martens PJ (2010) Conducting polymer-hydrogels for medical electrode applicatons. Sci Technol Adv Mater 11:1–13

    Article  Google Scholar 

  3. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Article  Google Scholar 

  4. Puppi D, Piras AM, Detta N, Ylikauppila H, Nikkola L, Ashammakhi N, Chiellini F, Chiellini E (2011) Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine. J Bioact Compat Polym 26:20–34

    Article  Google Scholar 

  5. Wang Y, Hsieh Y-L (2010) Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride. J Appl Polym Sci 116:3249–3255

    Article  Google Scholar 

  6. Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res Part B 86B:444–452

    Article  Google Scholar 

  7. Alves MH, Jensen BE, Smith AA, Zelikin AN (2011) Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol Biosci 11(10):1293–1313

    Article  Google Scholar 

  8. Hong KH (2007) Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings. Polym Eng Sci 47(1):43–49

    Article  Google Scholar 

  9. Liu R, Liu T, Zhao N (2012) Study on stabilized of poly(vinyl alcohol) nanofibers based sandwich structure purification material. Adv Mater Res 535–537:473–476

    Google Scholar 

  10. Franco RA, Min Y-K, Yang M-H, Lee B-T (2012) On stabilization of PVPA/PVA electrospun nanofiber membrane and its effect on material properties and biocompatibility. J Nanomater 2012:1–9

    Article  Google Scholar 

  11. Çay A, Miraftab M, Akçakoca Kumbasar EP (2014) Characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibres. Eur Polym J 61:253–262

    Article  Google Scholar 

  12. Miraftab M, Saifullah AN, Çay A (2015) Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: comparative study on methanol and heat-based crosslinking. J Mater Sci 50:1943–1957. doi:10.1007/s10853-014-8759-1

    Article  Google Scholar 

  13. Pelipenko J, Kocbek P, Govedarica B, Rosic R, Baumgartner S, Kristl J (2013) The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. Eur J Pharm Biopharm 84:401–411

    Article  Google Scholar 

  14. Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Biopharm 66:29–35

    Google Scholar 

  15. Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chem Mater 15(9):1860–1864

    Article  Google Scholar 

  16. Linh NGB, Lee B-T (2012) Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. J Biomater Appl 27(3):255–266

    Article  Google Scholar 

  17. Yang E, Qin X, Wang S (2008) Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett 62:3555–3557

    Article  Google Scholar 

  18. Blanes M, Gisbert MJ, Marco B, Bonet M, Gisbert J, Balart R (2010) Influence of glyoxal in the physical characterization of PVA nanofibres. Text Res J 80:1465–1472

    Article  Google Scholar 

  19. Tang C, Saquing CD, Harding JR, Khan SA (2010) In situ cross-linking of electrospun poly(vinyl alcohol) nanofibres. Macromolecules 43:630–637

    Article  Google Scholar 

  20. Kim K-O, Akada Y, Kai W, Kim B-S, Kim I-S (2011) Cells attachment property of PVA hydrogel nanofibers incorporating hyaluronic acid for tissue engineering. J Biomater Nanobiotechnol 2:353–360

    Article  Google Scholar 

  21. Qin X, Dou G, Jiang G, Zhang S (2013) Characterization of poly (vinyl alcohol) nanofiber mats cross-linked with glutaraldehyde. J Ind Text 43:34–44

    Article  Google Scholar 

  22. Cengiz Callıoğlu F (2014) The effect of glyoxal cross-linker and NaCl salt addition on the roller electrospinning of poly(vinyl alcohol) nanofibres. Tekstil ve Konfeksiyon 24(1):15–20

    Google Scholar 

  23. Tang Z, Wei J, Yung L, Ji B, Ma H, Qiu C, Yoon K, Wan F, Fang D, Hsiao BS, Chu B (2009) UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. J Membr Sci 328:1–5

    Article  Google Scholar 

  24. Yang CQ, Wang X (1996) lnfrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acid, II: comparison of different polycarboxylic acids. J Polym Sci Polym Chem Ed 34:1753–1780

    Article  Google Scholar 

  25. Yang CQ, Wang X, Kang I-S (1997) Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid. Text Res J 67:334

    Article  Google Scholar 

  26. Medronho B, Andrade R, Vivod V, Ostlund A, Miguel MG, Lindman B, Voncina B, Valente AJM (2013) Cyclodextrin–grafted cellulose: physico-chemical characterization. Carbohydr Polym 93(1):324–330

    Article  Google Scholar 

  27. Sigma-Aldrich (2016), Citric acid. http://www.sigmaaldrich.com/catalog/product/sial/c83155?Lang=en&region=TR. Accessed 01 Dec 2016

  28. Sigma-Aldrich (2016), 1,2,3,4-butanetetracarboxylic acid. http://www.sigmaaldrich.com/catalog/product/aldrich/257303?lang=en&region=TR. Accessed 01 Dec 2016

  29. Çay A, Miraftab M (2013) Properties of electrospun poly(vinyl alcohol) hydrogel nanofibers crosslinked with 1,2,3,4-butanetetracarboxylic acid. J Appl Polym Sci 129:3140–3149

    Article  Google Scholar 

  30. Stone SA, Gosavi P, Athauda TJ, Ozer RR (2013) In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibres. Mater Lett 112:32–35

    Article  Google Scholar 

  31. Akduman Ç, Akçakoca Kumbasar EP, Çay A (2015) Crosslinking of electrospun poly(vinyl alcohol) nanofibers with polycarboxylic acids. In: 15th AUTEX world textile conference, Bucharest, Romania

  32. Akduman Ç (2015) Development of electrospun drug releasing textile surfaces (in Turkish), Ph.D. thesis, Ege University, Graduate School of Natural and Applied Science

  33. Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V (2016) Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydr Polym 138:156–165

    Article  Google Scholar 

  34. Sricharussin W, Ryo-Aree W, Intasen W, Poungraksakirt S (2004) Effect of boric acid and BTCA on tensile strength loss of finished cotton fabrics. Text Res J 74:475–480

    Article  Google Scholar 

  35. Badulescu R, Vivod V, Jausovec D, Voncina B (2008) Grafting of ethylcellulose microcapsules onto cotton fibers. Carbohydr Polym 71:85–91

    Article  Google Scholar 

  36. Voncina B, Majcen-Le Marechal A (2005) Grafting of cotton with β-cyclodextrin via poly(carboxylic acid). J Appl Polym Sci 96:1323–1328

    Article  Google Scholar 

  37. Yang X, Zhu Z, Liu Q, Chen X (2008) Thermal and rheological properties of poly(vinyl alcohol) and water-soluble chitosan hydrogels prepared by a combination of c-ray irradiation and freeze thawing. J Appl Polym Sci 109:3825–3830

    Article  Google Scholar 

  38. Wang Y-L, Yang H, Xu Z-L (2008) Influence of post-treatments on the properties of porous poly(vinyl alcohol) membranes. J Appl Polym Sci 107(3):1423–1429

    Article  Google Scholar 

  39. Tretinnikov ON, Zagorskaya SA (2012) Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc 79(4):521–526

    Article  Google Scholar 

  40. George JD, Price CJ, Marr MC, Myers CB, Jahnke GD (2001) Developmental toxicity evaluation of 1,2,3,4 butanetetracarboxylic acid in Sprague Dawley (CDt) rats. Reprod Toxicol 15:413–420

    Article  Google Scholar 

  41. FDA, US Food and Drug Administration, 21CFR184.1033

  42. Schramm C, Rinderer B, Bobleter O (1997) Kinetic data for the crosslinking reaction of polycarboxylic acids with cellulose. Color Technol 113(12):346–349

    Google Scholar 

  43. CellTracker™ Fluroscent Probes (2016), Life Sciences Technologies. https://tools.thermofisher.com/content/sfs/manuals/celltracker_fluorescent_probes_man.pdf. Accessed 10 Dec 2016

  44. Keskin Z, Sendemir-Urkmez A, Hames EE (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153

    Article  Google Scholar 

  45. Kaur P, McDougall J (1988) Characterization of primary human keratinocytes transformed by human papillomavirus type 18. J Virol 62(6):1917–1924

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research Foundation of Ege University for the financial support given to this study (project number: 13-TKUAM-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Perrin Akçakoca Kumbasar.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organisation or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çay, A., Akçakoca Kumbasar, E.P., Keskin, Z. et al. Crosslinking of poly(vinyl alcohol) nanofibres with polycarboxylic acids: biocompatibility with human skin keratinocyte cells. J Mater Sci 52, 12098–12108 (2017). https://doi.org/10.1007/s10853-017-1370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1370-5

Keywords

Navigation