Skip to main content

Advertisement

Log in

Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The shape-memory properties of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys were determined through superelasticity and shape-memory tests in compression. It has been revealed that the Ni45.3Ti34.7Hf15Pd5 has a maximum transformation strain of 3.8 % and work output of up to 30 J cm−3, while the Ni45.3Ti29.7Hf20Pd5 has a maximum transformation strain of 2.6 % and work output of up to 20 J cm−3 at 700 MPa. Two-way shape-memory strains of 0.6 and 0.85 % were obtained in Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 alloys, respectively. The Ni45.3Ti34.7Hf15Pd5 showed superelasticity at 90 °C with recoverable strain of 3.1 %, while high hardening of Ni45.3Ti29.7Hf20Pd5 limited its superelastic behavior. Microstructure of the Ni45.3Ti34.7Hf15Pd5 alloy was revealed by transmission electron microscopy, and effects of composition on the lattice parameters of the transforming phases and martensite morphology were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Funakubo H (1987) Shape Memory Alloys, Volume 1 of Precision machinery and robotics, Taylor and Francis

  2. Leo DJ (2007) Engineering analysis of smart material systems. Wiley, New Jersey

    Book  Google Scholar 

  3. Chung DDL (2001) Review: materials for vibration damping. J Mater Sci 36:5733–5737. doi:10.1023/A:1012999616049

    Article  Google Scholar 

  4. Karaca HE, Saghaian SM, Tobe H, Acar E, Basaran B, Nagasako M et al (2014) Diffusionless phase transformation characteristics of Mn75.7Pt24.3. J Alloy Compd 589:412–415

    Article  Google Scholar 

  5. Noebe RBT, Padula SA, Srivatsan TS (2007) NiTi-based high-temperature shape-memory alloys: properties, prospects, and potential applications. In: Soboyejo WO (ed) Advanced structural materials: properties, design optimization, and applications. Taylor & Francis Group, Boca Raton, pp 145–186

    Google Scholar 

  6. LeBlanc L (2001) Part I - ‘Smart metals’ providing actuation, sealing, and completion functions downhole. Offshore 61:58–59

  7. LeBlanc L (2002) Part II - ‘Smart metals’ providing actuation, sealing, and completion functions downhole. Offshore 62:54–56

  8. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  9. Valiev RZ, Gunderov DV, Lukyanov AV, Pushin VG (2012) Mechanical behavior of nanocrystalline TiNi alloy produced by severe plastic deformation. J Mater Sci 47:7848–7853. doi:10.1007/s10853-012-6579-8

    Article  Google Scholar 

  10. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng [G] 221:535–552

    Article  Google Scholar 

  11. Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528

    Article  Google Scholar 

  12. Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691

    Google Scholar 

  13. Zhao T, Yang R, Zhong C, Li Y, Xiang Y (2011) Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro. J Mater Sci 46:2529–2535. doi:10.1007/s10853-010-5104-1

    Article  Google Scholar 

  14. Jan VH (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273–275:134–148

    Google Scholar 

  15. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678

    Article  Google Scholar 

  16. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315

    Article  Google Scholar 

  17. Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30:1530–1544

    Article  Google Scholar 

  18. Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC, Zhou LM (2002) Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett 55:111–115

    Article  Google Scholar 

  19. Bigelow GS, Garg A, Padula SA II, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scripta Mater 64:725–728

    Article  Google Scholar 

  20. Karaca HE, Saghaian SM, Basaran B, Bigelow GS, Noebe RD, Chumlyakov YI (2011) Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [111] orientation. Scripta Mater 65:577–580

    Article  Google Scholar 

  21. Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD et al (2013) Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Mater 61:5036–5049

    Article  Google Scholar 

  22. Karaca HE, Acar E, Basaran B, Noebe RD, Chumlyakov YI (2012) Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals. Scripta Mater 67:447–450

    Article  Google Scholar 

  23. Acar E, Karaca HE, Basaran B, Yang F, Mills MJ, Noebe RD et al (2013) Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Mater Sci Eng A 573:161–165

    Article  Google Scholar 

  24. Karaca HE, Acar E, Basaran B, Noebe RD, Bigelow G, Garg A et al (2012) Effects of aging on [111] oriented NiTiHfPd single crystals under compression. Scripta Mater 67:728–731

    Article  Google Scholar 

  25. Acar E, Karaca HE, Tobe H, Noebe RD, Chumlyakov YI (2013) Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy. J Alloy Compd 578:297–302

    Article  Google Scholar 

  26. Pu ZJ, Tseng H-K, Wu K-H (1994) An innovative system of high temperature shape memory alloys. SPIE, Orlando, p 2189

  27. Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Shape memory alloys. Springer, New York, pp 1–51

    Chapter  Google Scholar 

  28. Sehitoglu H, Hamilton R, Maier HJ, Chumlyakov Y (2004) Hysteresis in NiTi alloys. J Phys IV Fr 115:3–10

    Article  Google Scholar 

  29. Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402

    Article  Google Scholar 

  30. Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD et al (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5:286–290

    Article  Google Scholar 

  31. Delville R, Kasinathan S, Zhang ZY, Van Humbeeck J, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos Mag 90:177–195

    Article  Google Scholar 

  32. James RD, Hane KF (2000) Martensitic transformations and shape-memory materials. Acta Mater 48:197–222

    Article  Google Scholar 

  33. Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S et al (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 20:1917–1923

    Article  Google Scholar 

  34. Zhang ZY, James RD, Muller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57:4332–4352

    Article  Google Scholar 

  35. Bhattacharya K, Conti S, Zanzotto G, Zimmer J (2004) Crystal symmetry and the reversibility of martensitic transformations. Nature 428:55–59

    Article  Google Scholar 

  36. Lexcellent C, Blanc P, Creton N (2008) Two ways for predicting the hysteresis minimisation for shape memory alloys. Mater Sci Eng A 481–482:334–338

    Article  Google Scholar 

  37. Bhattacharya K (1993) Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin Mech Thermodyn 5:205–242

    Article  Google Scholar 

  38. Hane KF, Shield TW (1999) Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Mater 47:2603–2617

    Article  Google Scholar 

  39. Dalle F, Perrin E, Vermaut P, Masse M, Portier R (2002) Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy. Acta Mater 50:3557–3565

    Article  Google Scholar 

  40. Liu Y, Xie Z, Van Humbeeck J, Delaey L (1999) Deformation of shape memory alloys associated with twinned domain re-configurations. Mater Sci Eng A 273–275:679–684

    Article  Google Scholar 

  41. Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW et al (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in situ neutron diffraction. J Mech Phys Solids 61:2302–2330

    Article  Google Scholar 

  42. Meng XL, Cai W, Fu YD, Zhang JX, Zhao LC (2010) Martensite structure in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti, Hf)2Ni precipitates. Acta Mater 58:3751–3763

    Article  Google Scholar 

  43. Contardo L, Guénin G (1990) Training and two way memory effect in Cu–Zn–Al alloy. Acta Metall Mater 38:1267–1272

    Article  Google Scholar 

  44. Liu Y, McCormick PG (1990) Factors influencing the development of two-way shape memory in NiTi. Acta Metall Mater 38:1321–1326

    Article  Google Scholar 

  45. Nagasawa A, Enami K, Ishino Y, Abe Y, Nenno S (1974) Reversible shape memory effect. Scr Metall 8:1055–1060

    Article  Google Scholar 

  46. Perkins J, Sponholz R (1984) Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys. Metallurgical and Materials Transactions A 15:313–321

    Article  Google Scholar 

  47. Benafan O, Padula SA II, Noebe RD, Sisneros TA, Vaidyanathan R (2012) Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi. J Appl Phys 112:093510

    Article  Google Scholar 

  48. Grummon D (2003) Thin-film shape-memory materials for high-temperature applications. JOM 55:24–32

    Article  Google Scholar 

  49. Noebe R, Gaydosh D, II SP, Garg A, Biles T, Nathal M. (2005) Properties and potential of two (Ni, Pt)Ti alloys for use as high-temperature actuator materials. SPIE Conf Proc 5761:364–375

  50. Bigelow G, Padula S, Garg A, Gaydosh D, Noebe R (2010) Characterization of ternary NiTiPd High-temperature shape-memory alloys under load-biased thermal cycling. Metall Mater Trans A 41:3065–3079

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NASA Fundamental Aeronautics Program, Aeronautical Sciences Project, and the NASA EPSCOR program under Grant Nos: NNX11AQ31A, KY EPSCoR RID program under Grant No: 3049024332 and RFBR project with Grant No: 10-03-0154-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Karaca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, E., Tobe, H., Kaya, I. et al. Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys. J Mater Sci 50, 1924–1934 (2015). https://doi.org/10.1007/s10853-014-8757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8757-3

Keywords

Navigation