Skip to main content
Log in

Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured ferritic steels have excellent elevated temperature strengths, creep resistances, and radiation tolerances due to the presence of a high density of Ti–Y–O-enriched nanoclusters. The compositions, morphologies, and structures of the smallest of these nanoclusters with maximum dimensions of ~2–4 nm were investigated in alloy 14YWT by high-resolution scanning transmission electron microscopy and atom probe tomography. Nanoclusters are found to be coherent with truncated rhombic dodecahedron morphologies defined by the {100} and {110} planes in the Fe matrix. Particles have compositions rich in Ti, O, Y, and Cr that are inconsistent with known oxide structures. The smallest nanoclusters appear to lack an identifiable crystal structure. Both nano-diffraction and focal series imaging through the sample thickness suggest that they are amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayashi T, Sarosi PM, Schneibel JH, Mills MJ (2008) Acta Mater 56:1407

    Article  CAS  Google Scholar 

  2. Brandes MC, Kovarik L, Daehn GS, Mills MJ, Miller MK (2011) Acta Mater (in press)

  3. Schneibel JH, Liu CT, Miller MK, Mills MJ, Sarosi P, Heilmaier M, Sturm D (2009) Scr Mater 61:793

    Article  CAS  Google Scholar 

  4. Hoelzer DT, Bentley J, Sokolov MA, Miller MK, Odette GR, Alinger MJ (2007) J Nucl Mater 367:166

    Article  Google Scholar 

  5. Edmondson P, Parish CM, Zhang Y, Hallen A, Miller MK (2011) Scr Mater

  6. Subramanian MA, Aravamudan G, Rao GVS (1983) Prog Solid State Chem 15:55

    Article  CAS  Google Scholar 

  7. Ault JD, Welch AJE (1966) Acta Crystallogr A 20:410

    Article  CAS  Google Scholar 

  8. Mumme WG, Wadsley AD (1968) Acta Crystallogr B Struct Crystallogr Crystal Chem B 24:1327

    Article  Google Scholar 

  9. Mizutani N (1974) J Chem Soc Jpn 1623

  10. Mizutani N, Tajima Y, Kato M (1976) J Am Ceram Soc 59:168

    Article  CAS  Google Scholar 

  11. Zhang P, Navrotsky A, Guo B, Kennedy I, Clark AN, Lesher C, Liu QY (2008) J Phys Chem C 112:932

    Article  CAS  Google Scholar 

  12. Larson DJ, Maziasz PJ, Kim IS, Miyahara K (2001) Scr Mater 44:359

    Article  CAS  Google Scholar 

  13. Miller MK, Hoelzer DT, Kenik EA, Russell KF (2004) J Nucl Mater 329–333:338

    Article  Google Scholar 

  14. Miller MK, Russell KF, Hoelzer DT (2006) J Nucl Mater 351:261

    Article  CAS  Google Scholar 

  15. Klimenkov M, Lindau R, Moslang A (2009) J Nucl Mater 386–388:553

    Article  Google Scholar 

  16. Marquis EA (2008) Appl Phys Lett 93:181904

    Article  Google Scholar 

  17. Marquis EA (2008) Appl Phys Lett 93

  18. Certain AG, Field KG, Allen TR, Miller MK, Bentley J, Busby JT (2010) J Nucl Mater 407:2

    Article  CAS  Google Scholar 

  19. Hirata A, Fujoita T, Wen YR, Schneibel JH, Liu CT, Chen MW (2011) Nat Mater Lett. doi:10.1038/NMAT3150

  20. Sakasegawa H, Chaffron L, Legendre F, Boulanger L, Cozzika T, Brocq M, de Carlan Y (2009) J Nucl Mater 384:115

    Article  CAS  Google Scholar 

  21. Wilson JA, Craven AJ (2003) Ultramicroscopy 94:197

    Article  CAS  Google Scholar 

  22. Klimiankou M, Lindau R, Moslang A (2004) J Nucl Mater 329:347

    Article  Google Scholar 

  23. Yamashita S, Akasaka N, Ohnuki S (2004) J Nucl Mater 329:377

    Article  Google Scholar 

  24. (2011) Omniprobe™ Lift-Out System: complete in situ sample transfer solution between DualBeam™ and TEM. http://www.fei.com/uploadedFiles/Documents/Upgrades/Application_Notes/APPS_3600_11_1.pdf

  25. Pastewka L, Salzer R, Graff A, Altmann F, Moseler M (2009) Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 267:3072

    Article  CAS  Google Scholar 

  26. Fraser HL, Williams REA, Genc A (2008) The Ohio State University, Columbus, Ohio

  27. Malis T, Cheng SC, Egerton RF (1988) J Electron Microsc Tech 8:193

    Article  CAS  Google Scholar 

  28. Spence JCH, Tafto J (1983) J Microsc Oxf 130:147

    Article  CAS  Google Scholar 

  29. Bhattacharyya D, Dickerson P, Maloy S, Odette GR, Nastasi M, Misra A (2011) In: TMS 2011, 140th annual meeting 2011

  30. Cayron C, Montani A, Venet D, de Carlan Y (2010) J Nucl Mater 399:219

    Article  CAS  Google Scholar 

  31. Cunningham NJ, Wu Y, Haney E, Odette GR (2009) Characterization of the composition and structure of Y–Ti–O rich precipitates in nanostructured ferritic alloy MA957 by transmission electron microscopy and atom probe tomography. DOE/ER-0313/46 Semi-annual Progress Report 2009;46

  32. de Castro V, Marquis EA, Lozano-Perez S, Pareja R, Jenkins ML (2011) Acta Mater 59:3927

    Google Scholar 

  33. Oka K, Ohnuki S, Yamashita S, Akasaka N, Ohtsuka S, Tanigawa H (2007) Mater Trans 48:2563

    Article  CAS  Google Scholar 

  34. Miller MK, Parish CM (2011) Mater Sci Technol 27:729

    Google Scholar 

  35. Odette GR, Cunningham NJ, Yamamoto T, Wu Y, Etienne A, Stergar E (2011) In: TMS 2011, 140th annual meeting 2011

  36. Wu Y, Cunningham NJ, Odette GR, Stergar E, Etienne A, Haney E (2011) In: TMS 2011, 140th annual meeting 2011

  37. Gong W, Li D, Chen Z, Zheng F, Liu Y, Du Y, Huang B (2009) Calphad-Comput Coupling Phase Diagrams Thermochem 33:624

    CAS  Google Scholar 

  38. Alinger MJ, Wirth BD, Lee HJ, Odette GR (2007) J Nucl Mater 367:153

    Article  Google Scholar 

  39. Klimenkov M, Lindau R, Moslang A (2009) J Nucl Mater 2009:553

    Article  Google Scholar 

  40. Zhang L, Niu WX, Xu GB (2011) Nanoscale 3:678

  41. Kuo CH, Huang MH (2010) Nano Today 5:106

  42. Kim DY, Im SH, Park OO, Lim YT (2011) CrystEngComm 12:116

  43. Vystavel T (2005) Appl Phys Lett 86

  44. Lu ZG, Tang YG, Chen LM, Li YD (2004) J Cryst Growth 266:539

    Article  CAS  Google Scholar 

  45. Vystavel T, Palasantzas G, Koch SA, De Hosson JTM (2003) Appl Phys Lett 82:197

    Article  CAS  Google Scholar 

  46. Akola J, Manninen M (2002) Phys Rev B 65

  47. Borodzinski A, Bonarowska M (1997) Langmuir 13:5613

    Article  CAS  Google Scholar 

  48. Hovden R, Xin HL, Muller DA (2011) Microsc Microanal 17:75

  49. Borisevich AY, Lupini AR, Pennycook SJ (2006) Proc Natl Acad Sci USA 103:3044

    Article  CAS  Google Scholar 

  50. Yamashita S, Ohtsuka S, Akasaka N, Ukai S, Ohnuki S (2004) Philos Mag Lett 84:525

    Article  CAS  Google Scholar 

  51. Navrotsky A, Mazeina L, Majzlan J (2008) Science 319:1635

    Article  CAS  Google Scholar 

  52. Navrotsky A (2003) Geochem Trans 4:34

    Article  Google Scholar 

  53. Klimiankou M, Lindau R, Moslang A (2005) Micron 36:1

    Article  CAS  Google Scholar 

  54. Klimiankou M, Lindau R, Moslang A (2003) J Cryst Growth 249:381

    Article  CAS  Google Scholar 

  55. Hsiung L, Fluss M, Tumey S, Kuntz J, El-Dasher B, Wall M, Choi B, Kimura A, Willaime F, Serruys Y (2011) J Nucl Mater 409:72

    Google Scholar 

  56. de Castro V, Lozano-Perez S, Marquis EA, Auger MA, Leguey T, Pareja R (2011) Mater Sci Technol 27:719

    Article  Google Scholar 

  57. van Benthem K, Lupini AR, Oxley MP, Findlay SD, Allen LJ, Pennycook SJ (2006) Ultramicroscopy 106:1062

    Article  Google Scholar 

  58. Okuno H, Rouviere JL, Jouneau PH, Bayle-Guillemaud P, Daudin B (2010) Appl Phys Lett 96

  59. Fu CL et al (2011) (submitted)

  60. Fu CL, Krcmar M, Painter GS, Chen XQ (2007) Phys Rev Lett 99

  61. Ratti M, Leuvrey D, Mathon MH, de Carlan Y (2009) J Nucl Mater 386:540

    Article  Google Scholar 

  62. Miller MK, Hoelzer DT, Kenik EA, Russell KF (2005) Intermetallics 13:387

    Article  CAS  Google Scholar 

  63. Odette GR, Alinger MJ, Wirth BD (2008) Annu Rev Mater Res 38:471

    Article  CAS  Google Scholar 

  64. Miao P, Odette GR, Yamamoto T, Alinger M, Klingensmith D (2008) J Nucl Mater 377:59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. D.T. Hoelzer for supplying the material used in this study, Dr. Joachim Schneibel for provision of deformed compression specimens, and Professor H.L. Fraser for access to the Fischione 1040 Nanomill®. Additionally, the authors thank Mr. Mike Kuper for his efforts pertaining to data and image management. This research was sponsored by the US Department of Energy, Materials Sciences and Engineering Division, Office of Basic Energy Sciences under Contract No. DE-AC05-00OR22725. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Brandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, M.C., Kovarik, L., Miller, M.K. et al. Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel. J Mater Sci 47, 3913–3923 (2012). https://doi.org/10.1007/s10853-012-6249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6249-x

Keywords

Navigation