Skip to main content
Log in

A Novel Euler’s Elastica-Based Segmentation Approach for Noisy Images Using the Progressive Hedging Algorithm

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Euler’s elastica-based unsupervised segmentation models have strong capability of completing the missing boundaries for existing objects in a clean image, but they are not working well for noisy images. This paper aims to establish a Euler’s elastica-based approach that can properly deal with the random noises to improve the segmentation performance for noisy images. The corresponding formulation of stochastic optimization is solved via the progressive hedging algorithm (PHA), and the description of each individual scenario is obtained by the alternating direction method of multipliers. Technically, all the sub-problems derived from the framework of PHA can be solved by using the curvature-weighted approach and the convex relaxation method. Then, an alternating optimization strategy is applied by using some powerful accelerating techniques including the fast Fourier transform and generalized soft threshold formulas. Extensive experiments have been conducted on both synthetic and real images, which displayed significant gains of the proposed segmentation models and demonstrated the advantages of the developed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Li, F., et al.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imaging Sci. 3(3), 277–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu, H., Wang, W.W., Feng, X.C.: A new fast multiphase image segmentation algorithm based on nonconvex regularizer. Pattern Recognit. 45(1), 363–372 (2012)

    Article  MATH  Google Scholar 

  5. Wang, B., Yuan, X., Gao, X., et al.: A hybrid level set with semantic shape constraint for object segmentation. IEEE Trans. Cybern. 49, 1558–1569 (2018)

    Article  Google Scholar 

  6. Tan, L., Pan, Z., Liu, W., Duan, J., Wei, W., Wang, G.: Image segmentation with depth information via simplified variational level set formulation. J. Math. Imaging Vis. 60(1), 1–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhu, W., Chan, T.F., Esedoglu, S.: Segmentation with depth: a level set approach. SIAM J. Sci. Comput. 28(5), 1957–1973 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tan, L., Liu, W., Li, L., et al.: A fast computational approach for illusory contour reconstruction. Multimed. Tools Appl. 78(8), 10449–10472 (2019)

    Article  Google Scholar 

  9. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  10. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13(1–2), 249–268 (2002)

    Article  Google Scholar 

  11. Martin, P., Réfrégier, P., Goudail, F., Guérault, F.: Influence of the noise model on level set active contour segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 26, 799–803 (2004)

    Article  Google Scholar 

  12. Sawatzky, A., et al.: A variational framework for region-based segmentation incorporating physical noise models. J. Math. Imaging Vis. 47(3), 179–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu, W., Tai, X.C., Chan, T.F.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57(2), 414–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tai, X.C., Duan, J.M.: A simple fast algorithm for minimization of the elasitica energy combining binary and level set representations. Int. J. Numer. Anal. Model. 14(6), 809–821 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation, and Depth, Lecture Notesin Computer Sciences, 662. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  16. Kang, S.H., Zhu, W., Shen, J.H.: Illusory shapes via corner fusion. SIAM J. Imaging Sci. 7(4), 1907–1936 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhu, W., Tai, X.C., Chan, T.F.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems Imaging 7(4), 1409–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tan, L., Liu, W., Pan, Z.: Color image restoration and inpainting via multi-channel total curvature. Appl. Math. Model. 61, 280–299 (2018)

    Article  MathSciNet  Google Scholar 

  19. Tan, L., Liang, A., Li, L., et al.: Automatic prostate segmentation based on fusion between deep network and variational methods. J. X-ray Sci. Technol. (2019). https://doi.org/10.3233/XST-190524

    Article  Google Scholar 

  20. Yashtini, M., Kang, S.H.: A fast relaxed normal two split method and an effective weighted tv approach for Euler’s elastica image inpainting. SIAM J. Imaging Sci. 9(4), 1552–1581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, Y., Nie, F., Li, W., et al.: Image classification by cross-media active learning with privileged information. IEEE Trans. Multimed. 18(12), 2494–2502 (2016)

    Article  Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.B.: Stochastic variational inequalities: single-stage to multistage. Math. Program. 165(1), 331–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T., Sun, J.: Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging. Math. Program. 174, 453–471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glowinski, R., Pan, T.W., Tai, X.C.: Some Facts About Operator-splitting and Alternating Direction Methods. Splitting Methods in Communication, Imaging, Science, and Engineering, pp. 19–94. Springer, Cham (2016)

    MATH  Google Scholar 

  25. Bae, E., Shi, J., Tai, X.C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process. 20(5), 1199–1210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deng, L.J., Glowinski, R., Tai, X.C.: A New Operator Splitting Method for Euler’s Elastica Model. arXiv preprint arXiv:1811.07091 (2018)

  27. Morel, J.M., Petro, A.B., Sbert, C.: Screened Poisson equation for image contrast enhancement. Image Process. Line 4, 16–29 (2014)

    Article  Google Scholar 

  28. Kellman, P., et al.: Classification images reveal that deep learning networks fail to perceive illusory contours. J. Vis. 17(10), 569–569 (2017)

    Article  Google Scholar 

  29. Poscoliero, T., Girelli, M.: Electrophysiological modulation in an effort to complete illusory figures: configuration, illusory contour and closure effects. Brain Topogr. 31(2), 202–217 (2018)

    Article  Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16, 119–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, J., Xu, H.L., Zhang, M.: A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems. J. Ind. Manag. Optim. 2, 1–2 (2019). https://doi.org/10.3934/jimo.2019022

    Article  Google Scholar 

  32. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  33. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, J., Bae, E., Tai, X.C.: A Study on Continuous Max-Flow and Min-Cut Approaches. In:CVPR, USA, San Francisco (2010)

  36. Bae, E., et al.: A Fast Continuous Max-Flow Approach to Non-convex Multi-labeling Problems. Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 134–154. Springer, Berlin (2014)

    Google Scholar 

  37. Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1–2), 165–199 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, Q., Shen, X., Gu, Y.: Linearized ADMM for Non-convex Non-smooth Optimization with Convergence Analysis. arXiv preprint arXiv:1705.02502 (2017)

  39. Myllykoski, M., Glowinski, R., Karkkainen, T., Rossi, T.: A new augmented Lagrangian approach for L1-mean curvature image denoising. SIAM J. Imaging Sci. 8(1), 95–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yashtini, M.: Alternating Direction Method of Multiplier for Euler’s Elastica-Based Denoising, Scale Space and Variational Methods in Computer Vision, pp. 690–701. Springer, Berlin (2015)

    Book  Google Scholar 

  41. Bae, E., Tai, X.C., Zhu, W.: Augmented Lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Problems Imaging 11(1), 1–23 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Li, L., Liu, W. et al. A Novel Euler’s Elastica-Based Segmentation Approach for Noisy Images Using the Progressive Hedging Algorithm. J Math Imaging Vis 62, 98–119 (2020). https://doi.org/10.1007/s10851-019-00920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00920-0

Keywords

Navigation