Skip to main content
Log in

How to Make n-D Plain Maps Defined on Discrete Surfaces Alexandrov-Well-Composed in a Self-Dual Way

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In 2013, Najman and Géraud proved that by working on a well-composed discrete representation of a gray-level image, we can compute what is called its tree of shapes, a hierarchical representation of the shapes in this image. This way, we can proceed to morphological filtering and to image segmentation. However, the authors did not provide such a representation for the non-cubical case. We propose in this paper a way to compute a well-composed representation of any gray-level image defined on a discrete surface, which is a more general framework than the usual cubical grid. Furthermore, the proposed representation is self-dual in the sense that it treats bright and dark components in the image the same way. This paper can be seen as an extension to gray-level images of the works of Daragon et al. on discrete surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Notes

  1. A set C of simplices is said to be closed under inclusion if for any element \(h \in C\) and any element \(h' \subseteq h\), then \(h'\) belongs to C.

  2. We say that a poset is regular (in the discrete sense) when it is a discrete surface or when its boundary is made of disjoint discrete surfaces.

  3. A set is said to be degenerate if it is a singleton.

  4. We recall that the symmetric median operator\(\mathrm {med} \) applied to a list of an even number of elements of \(\mathbb {R} \) returns the average of the two middle values of the sorted list; otherwise, when the list contains an odd number of elements of \(\mathbb {R} \), it returns the middle value of the sorted list.

  5. We define the threshold set\([u > \lambda ]\) for \(\lambda \in \mathbb {R} \) and \(u : \mathcal {D} \rightarrow \mathbb {R} \) as the set \(\{x \in \mathcal {D}; \; u(x) > \lambda \}\).

  6. An interval is denoted (ab) when its is equal to [ab], ]ab], [ab[, or ]ab[.

  7. Recall that a set X is said to be unicoherent if X is connected and for any two closed connected sets M and N such that \(M \cup N = X\), then \(M \cap N\) is connected.

References

  1. Alexander, J.W.: A proof and extension of the Jordan–Brouwer separation theorem. Trans. Am. Math. Soc. 23(4), 333–349 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, P.S.: Diskrete Räume. Matematicheskii Sbornik 2(3), 501–519 (1937)

    MATH  Google Scholar 

  3. Alexandrov, P.S.: Combinatorial Topology, vol. 1-3. Dover Publications, New York (2011)

    Google Scholar 

  4. Alexandrov, P.S., Hopf, H., Topologie, I.: Die grundlehren der mathematischen wissenschaften in einzeldarstellungen, vol. 45. Springer, Berlin (1945)

    Google Scholar 

  5. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Springer, New York (2009)

    Book  MATH  Google Scholar 

  6. Bertrand, G.: New notions for discrete topology. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science Series, vol. 1568, pp. 218–228. Springer (1999)

  7. Bertrand, G., Everat, J.-C., Couprie, M.: Topological approach to image segmentation. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Vision Geometry V, vol. 2826, pp. 65–76. International Society for Optics and Photonics (1996)

  8. Bertrand, G., Everat, J.-C., Couprie, M.: Image segmentation through operators based on topology. J. Electron. Imaging 6(4), 395–405 (1997)

    Article  Google Scholar 

  9. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Opt. Eng. 34, 433–433 (1992)

    Google Scholar 

  10. Boutry, N.: A study of well-composedness in \(n\)-D. Ph.D. thesis, Université Paris-Est, Noisy-Le-Grand, France (2016)

  11. Boutry, N., Géraud, T., Najman, L.: How to make \(n\)-D functions digitally well-composed in a self-dual way. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science Series, vol. 9082, pp. 561–572. Springer (2015)

  12. Boutry, N., Géraud, T., Najman, L.: How to make \(n\)-D images well-composed without interpolation. In: International Conference on Image Processing. IEEE (2015)

  13. Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60, 443–478 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boutry, N., González-Díaz, R., Jiménez, M.J.: Weakly well-composed cell complexes over \(n\)-D pictures. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.06.005

    Google Scholar 

  15. Boutry, N., Najman, L., Géraud, T.: About the equivalence between AWCness and DWCness. Research report, LIGM: Laboratoire d’Informatique Gaspard-Monge ; LRDE: Laboratoire de Recherche et de Développement de l’EPITA (HAL Id: hal-01375621) (2016)

  16. Boutry, N., Najman, L., Géraud, T.: Well-composedness in Alexandrov spaces implies digital well-composedness in \({\mathbb{Z}}^n\). In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science Series, vol. 10502, pp. 225–237. Springer (2017)

  17. Carlinet, E., Géraud, T.: A color tree of shapes with illustrations on filtering, simplification, and segmentation. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science Series, vol. 9082, pp. 363–374. Springer (2015)

  18. Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vis. 17(3), 249–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  20. Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.02.049

    Google Scholar 

  21. Daragon, X.: Surfaces discrètes et frontières d’objets dans les ordres. Ph.D. thesis, Université de Marne-la-Vallée (2005)

  22. Daragon, X., Couprie, M., Bertrand, G.: Discrete surfaces and frontier orders. J. Math. Imaging Vis. 23(3), 379–399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eckhardt, U., Latecki, L.J.: Digital topology. Institut für Angewandte Mathematik (1994)

  24. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Foundations of Computer Science, pp. 454–463. IEEE (2000)

  25. Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of \(n\)-D images. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science Series, vol. 7883, pp. 98–110. Springer (2013)

  27. González-Díaz, R., Jiménez, M.J., Medrano, B.: Well-composed cell complexes. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science Series, vol. 6607, pp. 153–162. Springer (2011)

  28. González-Díaz, R., Jiménez, M.J., Medrano, B.: 3D well-composed polyhedral complexes. Discrete Appl. Math. 183, 59–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. González-Díaz, R., Jiménez, M.J., Medrano, B.: Encoding specific 3D polyhedral complexes using 3D binary images. In: Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science Series, vol. 9647, pp. 268–281. Springer (2016)

  30. González-Díaz, R., Jiménez, M.J., Medrano, B.: Efficiently storing well-composed polyhedral complexes computed over 3D binary images. J. Math. Imaging Vis. 59(1), 106–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Greenberg, M.J.: Lectures on Algebraic Topology. Mathematics Lecture Note, vol. 33556. W.A. Benjamin, New York (1977)

    Google Scholar 

  32. Hudson, J.F.: Piecewise Linear Topology, vol. 1. Benjamin, New York (1969)

  33. Kelley, J.L.: General Topology Graduate. Texts in Mathematics, vol. 27. Springer, New York (1975)

    Google Scholar 

  34. Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-dimensional digital spaces. Discrete Comput. Geom. 6(2), 155–161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital boundaries: a topological approach to ISO-surfaces. Graph. Models Image Process. 62(3), 129–164 (2000)

    Article  Google Scholar 

  36. Latecki, L.J.: Well-composed sets. Adv. Electron. Electron Phys. 112, 95–163 (2000)

    Google Scholar 

  37. Levillain, R., Géraud, T., Najman, L.: Writing reusable digital topology algorithms in a generic image processing framework. In: Applications of Discrete Geometry and Mathematical Morphology. Lecture Notes in Computer Science Series, vol. 7346, pp. 140–153. Springer (2012)

  38. Lima, E.L.: The Jordan–Brouwer separation theorem for smooth hypersurfaces. Am. Math. Mon. 95(1), 39–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 163–169. ACM (1987)

  40. Meyer, F.: Skeletons and perceptual graphs. Signal Process. 16(4), 335–363 (1989)

    Article  MathSciNet  Google Scholar 

  41. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science Series, vol. 7883, pp. 37–48. Springer (2013)

  42. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  43. Serra, J., Soille, P.: Mathematical Morphology and Its Applications to Image Processing, vol. 2. Springer, New York (2012)

    MATH  Google Scholar 

  44. Whitehead, G.W.: Elements of Homotopy Theory. Graduate Texts in Mathematics, vol. 61. Springer, New York (1978)

    Book  Google Scholar 

  45. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: applications using tree-based image representations. In: International Conference on Pattern Recognition, pp. 485–488. IEEE (2012)

Download references

Acknowledgements

We would like to acknowledge the time and effort devoted by the reviewers, which greatly improved the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Géraud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we prove some remarkable properties specific to the framework of this paper.

Lemma 2

Let X be a suborder of a poset Y of rank \(n \ge 0\), with \(X = \cup _{x \in X_n} \alpha _Y(x)\). Then, we have:

$$\begin{aligned} \alpha _Y(Y {\setminus } X) \sqcup \mathrm {Int} _Y(X) = Y. \end{aligned}$$

Proof

Let us first prove that the union is disjoint. Let us assume that there exists some \(p \in \alpha _Y(Y {\setminus } X) \cap \mathrm {Int} (X)\). Since \(p \in \alpha _Y(Y {\setminus } X)\), there exists some \(z \in Y {\setminus } X\) such that \(p \in \alpha _Y(z)\), that is, \(\beta _Y(z) \subseteq \beta _Y(p)\). Besides, \(Y {\setminus } X\) is open since X is closed, then \(\beta _Y(z) \subseteq Y {\setminus } X\). However, \(p \in \mathrm {Int} _Y(X)\) implies that \(\beta _Y(p) \subseteq X\) and then:

$$\begin{aligned} \beta _Y(z) \subseteq \beta _Y(p) \subseteq X, \end{aligned}$$

which contradicts \(\beta _Y(z) \subseteq Y {\setminus } X\).

Let us now prove that the union is equal to Y. The fact that \(\alpha _Y(Y {\setminus } X) \sqcup \mathrm {Int} _Y(X) \subseteq Y\) is obvious. Now, let us prove the converse inclusion. Let h be a face of Y. Two cases are possible:

  • either \(\beta _Y(h) \subseteq X\), then \(h \in \mathrm {Int} _Y(X)\),

  • or \(\beta _Y(h) \not \subseteq X\), then \(\beta _Y(h) \cap (Y {\setminus } X) \ne \emptyset \), and then there exists some \(p \in \beta _Y(h) \cap (Y {\setminus } X)\); that is, \(h \in \alpha _Y(p)\) and \(p \in Y {\setminus } X\). In other words, \(h \in \alpha _Y(Y {\setminus } X)\).

The proof is done. \(\square \)

Proposition 8

Let X be a suborder of a poset Y of rank \(n \ge 0\), with \(X = \cup _{x \in X_n} \alpha _Y(x)\). Then the topological boundary:

$$\begin{aligned} \alpha _Y(X) {\setminus } \mathrm {Int} _Y(X) \end{aligned}$$

of X in Y is equal to the combinatorial boundary:

$$\begin{aligned} \alpha _Y(X) \cap \alpha _Y(Y {\setminus } X) \end{aligned}$$

of X in Y.

Proof

This proposition follows directly from Lemma 2. \(\square \)

Property 8

The set-valued map \(U_{\mathrm {USC}}: Y \rightarrow \mathbb {I}_{\mathbb {R}} \) is upper semi-continuous.

Proof

The fact that \(U_{\mathrm {USC}} \) is USC relies on the fact that for any \(z \in Y\) and for any \(z' \in \beta _Y(z)\):

$$\begin{aligned} U_{\mathrm {USC}} (z') \subseteq U_{\mathrm {USC}} (z). \end{aligned}$$

Indeed, let z be an element of Y and let \(z'\) be an element of \(\beta _Y(z)\):

  • when \(z \in \mathrm {bd} (X,Y)\):

    $$\begin{aligned} U_{\mathrm {USC}} (z) = \mathrm {Span} \{\mathfrak {M},\mathrm {Span} \{U(q) ; \; q \in \beta _Y(z) \cap X_n\}\}, \end{aligned}$$
    • when \(z' \in \beta _Y(z) \cap \mathrm {bd} (X,Y)\), \(U_{\mathrm {USC}} (z')\) is equal to:

      $$\begin{aligned} \mathrm {Span} \{\mathfrak {M},\mathrm {Span} \{U(q) ; \; q \in \beta _Y(z') \cap X_n\}\}, \end{aligned}$$

      which is included in \(U_{\mathrm {USC}} (z)\) since \(\beta _Y(z') \subseteq \beta _Y(z)\),

    • when \(z' \in \beta _Y(z)\) such that \(z' \not \in \mathrm {bd} (X,Y)\), either \(z' \in X {\setminus } \mathrm {bd} (X,Y)\) (which is an open set), which implies \(\beta _Y(z') \subseteq X\) and \(U_{\mathrm {USC}} (z') = U(z') \subseteq U_{\mathrm {USC}} (z)\), or \(z' \in Y {\setminus } X\) (which is an open set since it is equal to \(Y {\setminus } \mathrm {bd} (X,Y)\)), which implies \(\beta _Y(z') \subseteq Y {\setminus } X\) and \(U_{\mathrm {USC}} (z') = \{\mathfrak {M} \} = U(z') \subseteq U_{\mathrm {USC}} (z)\),

  • when \(z \in X {\setminus } \mathrm {bd} (X,Y)\), then \(\beta _Y(z) \subseteq X\), which means that \(z' \in \beta _Y(z)\) belongs to X, and then:

    $$\begin{aligned} U_{\mathrm {USC}} (z') = U(z') \subseteq U(z), \end{aligned}$$
  • when \(z \in Y {\setminus } X\), then \(\beta _Y(z) \subseteq Y {\setminus } X\), then for any \(z' \in \beta _Y(z)\), \(U_{\mathrm {USC}} (z') = \{\mathfrak {M} \} = U_{\mathrm {USC}} (z)\).

This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutry, N., Géraud, T. & Najman, L. How to Make n-D Plain Maps Defined on Discrete Surfaces Alexandrov-Well-Composed in a Self-Dual Way. J Math Imaging Vis 61, 849–873 (2019). https://doi.org/10.1007/s10851-019-00873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00873-4

Keywords

Navigation